Skip to main content

Advertisement

Log in

N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovarian syndrome (PCOS) is often accompanied by overweight/obesity and insulin resistance. The dysfunctions of ovarian granulosa cells (GCs) are closely linked with the pathogenesis of PCOS. Fat mass and obesity-associated gene (FTO), an N6-methyladenosine (m6A) demethylase, has been reported to be implicated in the risks and insulin resistance of PCOS. However, the roles of FTO in the development of GCs along with its m6A-related regulatory mechanisms are poorly defined. Cell proliferative ability was detected by MTT assay. Cell apoptotic rate was measured via flow cytometry. Insulin resistance was assessed by GLUT4 transport potential. The mRNA and protein levels of FTO and flotillin 2 (FLOT2) were determined by RT-qPCR and western blot assays, respectively. FLOT2 was screened out to be a potential FTO target through differential expression analysis for the GSE95728 dataset and target prediction analysis by POSTAR2 and STARBASE databases. The interaction between FTO and FLOT2 was analyzed by RNA immunoprecipitation (RIP) assay. The effect of FTO upregulation on FLOT2 m6A level was measured by methylated RIP (meRIP) assay. FLOT2 mRNA stability was examined by actinomycin D assay. FTO overexpression facilitated cell proliferation, hindered cell apoptosis, and induced insulin resistance in GCs. FTO promoted FLOT2 expression by reducing m6A level on FLOT2 mRNA and increasing FLOT2 mRNA stability. FLOT2 loss weakened the effects of FTO overexpression on cell proliferation/apoptosis and insulin resistance in GCs. FTO induced the dysfunctions of GCs by upregulating FLOT2, suggesting that FTO/FLOT2 might play a role in the pathophysiology of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and material presented in this manuscript is available from the corresponding author on reasonable request.

References

  1. Azziz R. Polycystic ovary syndrome. Obstet Gynecol. 2018;132:321–36.

    Article  PubMed  Google Scholar 

  2. Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2016;31:2841–55.

    Article  PubMed  Google Scholar 

  3. Neven ACH, Laven J, Teede HJ, Boyle JA. A summary on polycystic ovary syndrome: diagnostic criteria, prevalence, clinical manifestations, and management according to the latest international guidelines. Semin Reprod Med. 2018;36:5–12.

    Article  PubMed  Google Scholar 

  4. Louwers YV, Laven JSE. Characteristics of polycystic ovary syndrome throughout life. Ther Adv Reprod Health. 2020;14:2633494120911038.

    PubMed  PubMed Central  Google Scholar 

  5. Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12:249–60.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jin P, Xie Y. Treatment strategies for women with polycystic ovary syndrome. Gynecol Endocrinol. 2018;34:272–7.

    Article  PubMed  Google Scholar 

  7. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14:270–84.

    Article  PubMed  Google Scholar 

  8. Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res. 2020;13:1–12.

    Article  Google Scholar 

  9. Wei D, Xie J, Yin B, Hao H, Song X, Liu Q, et al. Significantly lengthened telomere in granulosa cells from women with polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2017;34:861–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baumgarten SC, Armouti M, Ko C, Stocco C. IGF1R expression in ovarian granulosa cells is essential for steroidogenesis, follicle survival, and fertility in female mice. Endocrinology. 2017;158:2309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yi S, Zheng B, Zhu Y, Cai Y, Sun H, Zhou J. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab. 2020;319:E91–e101.

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj J, Sharma R. Apoptosis and ovarian follicular atresia in mammals. Zoology. 2012:185–206.

  13. Bhardwaj J, Sharma R. Scanning electron microscopic changes in granulosa cells during follicular atresia in Caprine ovary. Scanning. 2011;33:21–4.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma R, Bhardwaj J. Granulosa cell apoptosis in situ in caprine ovary. Cell Tissue Res. 2007;7:1111–4.

    Google Scholar 

  15. Bhardwaj JK, Saraf P. Morphological attributes of granulosa cells perpetuating functional integrity of an ovarian follicle. J Adv Microsc Res. 2017;12:92–6.

    Article  Google Scholar 

  16. Coyle C, Campbell RE. Pathological pulses in PCOS. Mol Cell Endocrinol. 2019;498:110561–70.

    Article  CAS  PubMed  Google Scholar 

  17. Balen A. The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. Best Pract Res Clin Obstet Gynaecol. 2004;18:685–706.

    Article  PubMed  Google Scholar 

  18. Barber TM, Hanson P. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeanes YM, Reeves S. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges. Nutr Res Rev. 2017;30:97–105.

    Article  PubMed  Google Scholar 

  20. Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism. 2019;92:108–20.

    Article  CAS  PubMed  Google Scholar 

  21. Zeng X, Xie YJ, Liu YT, Long SL, Mo ZC. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214–21.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m(6)A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol. 2019;145:19–29.

    Article  CAS  PubMed  Google Scholar 

  23. Deng X, Su R, Stanford S, Chen J. Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol (Lausanne). 2018;9:396–402.

    Article  Google Scholar 

  24. Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X, et al. FTO - a common genetic basis for obesity and cancer. Front Genet. 2020;11:559138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Chen Y. Fat mass and obesity associated gene polymorphism and the risk of polycystic ovary syndrome: a meta-analysis. Iran J Public Health. 2017;46:4–11.

    PubMed  PubMed Central  Google Scholar 

  26. Liu AL, Xie HJ, Xie HY, Liu J, Yin J, Hu JS, et al. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med Genet. 2017;18:89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Wang K, Yan J, Wu M. A meta-analysis on associations of FTO, MTHFR and TCF7L2 polymorphisms with polycystic ovary syndrome. Genomics. 2020;112:1516–21.

    Article  CAS  PubMed  Google Scholar 

  28. Kowalska I, Malecki MT, Straczkowski M, Skupien J, Karczewska-Kupczewska M, Nikolajuk A, et al. The FTO gene modifies weight, fat mass and insulin sensitivity in women with polycystic ovary syndrome, where its role may be larger than in other phenotypes. Diabetes Metab. 2009;35:328–31.

    Article  CAS  PubMed  Google Scholar 

  29. Tan S, Scherag A, Janssen OE, Hahn S, Lahner H, Dietz T, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with polycystic ovary syndrome (PCOS). BMC Med Genet. 2010;11:12–20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang S, Deng W, Liu Q, Wang P, Yang W, Ni W. Altered m(6) A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients. J Cell Mol Med. 2020;24:11874–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fang X, Li M, Yu T, Liu G, Wang J. Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes Dis. 2020;7:585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dai D, Wang H, Zhu L, Jin H, Wang X. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 2018;9:124–36.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karthiya R, Khandelia P. m6A RNA methylation: ramifications for gene expression and human health. 2020;62:467–84.

  34. Li J, Han Y, Zhang H, Qian Z, Jia W, Gao Y, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun. 2019;512:479–85.

    Article  CAS  PubMed  Google Scholar 

  35. Ma D, Liu X, Zhang JJ, Zhao JJ, Xiong YJ, Chang Q, et al. Vascular smooth muscle fto promotes aortic dissecting aneurysms via m6A modification of Klf5. Front Cardiovasc Med. 2020;7:592550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan W, Liu L, Wei J, Ge Y, Zhang J, Chen H, et al. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Mol Carcinog. 2016;55:90–6.

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  38. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tan J, Guo L. Swimming intervention alleviates insulin resistance and chronic inflammation in metabolic syndrome. Exp Ther Med. 2019;17:57–62.

    CAS  PubMed  Google Scholar 

  40. Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell. 2018;175:117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma HP, Ming LG, Ge BF, Zhai YK, Song P, Xian CJ, et al. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J Cell Biochem. 2011;112:916–23.

    Article  CAS  PubMed  Google Scholar 

  42. Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett. 2008;179:43–7.

    Article  CAS  PubMed  Google Scholar 

  43. Gao X, Zhang X, Hu J, Xu X, Zuo Y, Wang Y, et al. Aconitine induces apoptosis in H9c2 cardiac cells via mitochondria-mediated pathway. Mol Med Rep. 2018;17:284–92.

    CAS  PubMed  Google Scholar 

  44. Liao Y, Wang Z, Wang L, Lin Y, Ye Z, Zeng X, et al. MicroRNA-27a-3p directly targets FosB to regulate cell proliferation, apoptosis, and inflammation responses in immunoglobulin a nephropathy. Biochem Biophys Res Commun. 2020;529:1124–30.

    Article  CAS  PubMed  Google Scholar 

  45. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu Y, Xu G, Yang YT, Xu Z, Chen X, Shi B, et al. POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Res. 2019;47:D203–11.

    Article  CAS  PubMed  Google Scholar 

  47. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:293–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kang MH, Jeong KJ, Kim WY, Lee HJ, Gong G, Suh N, et al. Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene. 2017;36:1745–52.

    Article  CAS  PubMed  Google Scholar 

  49. Wang LJ, Xue Y, Li H, Huo R, Yan Z, Wang J, et al. Wilms’ tumour 1-associating protein inhibits endothelial cell angiogenesis by m6A-dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. 2020;24:4981–91.

  50. Wang D, Du X, Li Y, Li Q. A polymorphism in the transcriptional regulatory region strongly influences ovine FSHR mRNA decay. 2019;54:83–90.

  51. Liu YD, Li Y, Feng SX, Ye DS, Chen X, Zhou XY, et al. Long noncoding RNAs: potential regulators involved in the pathogenesis of polycystic ovary syndrome. Endocrinology. 2017;158:3890–9.

    Article  CAS  PubMed  Google Scholar 

  52. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.

    CAS  PubMed  Google Scholar 

  53. Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20:373–81.

    Article  CAS  PubMed  Google Scholar 

  54. Erion KA, Corkey BE. Hyperinsulinemia: a cause of obesity? Curr Obes Rep. 2017;6:178–86.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Freeman AM, Pennings N. Insulin resistance. In: StatPearls. StatPearls Publishing, Treasure Island (FL). 2020.

  56. Sakumoto T, Tokunaga Y, Tanaka H, Nohara M, Motegi E, Shinkawa T, et al. Insulin resistance/hyperinsulinemia and reproductive disorders in infertile women. Reprod Med Biol. 2010;9:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma R, Bhardwaj J. In situ evaluation of granulosa cells during apoptosis in caprine ovary. Int J Integr Biol. 2009;5:58–67.

    Google Scholar 

  58. Bhardwaj J, Saraf P. Influence of toxic chemicals on female reproduction: a review. Cell Biol Res Ther. 2014;3:1–10.

    Article  Google Scholar 

  59. Bhardwaj JK, Mittal M, Saraf P, Kumari P. Pesticides induced oxidative stress and female infertility: a review. Toxin Rev. 2018;39:1–13.

    Article  Google Scholar 

  60. Lai Q, Xiang W, Li Q, Zhang H, Li Y, Zhu G, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med. 2018;12:518–24.

    Article  PubMed  Google Scholar 

  61. Das M, Djahanbakhch O, Hacihanefioglu B, Saridogan E, Ikram M, Ghali L, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:881–7.

    Article  CAS  PubMed  Google Scholar 

  62. Moghetti P. Insulin resistance and polycystic ovary syndrome. Curr Pharm Des. 2016;22:5526–34.

    Article  CAS  PubMed  Google Scholar 

  63. Mohan SS, Perry JJ, Poulose N, Nair BG, Anilkumar G. Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors. J Biomol Struct Dyn. 2009;26:455–64.

    Article  Google Scholar 

  64. Klip A, McGraw TE, James DE. Thirty sweet years of GLUT4. J Biol Chem. 2019;294:11369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rowland AF, Fazakerley DJ, James DE. Mapping insulin/GLUT4 circuitry. Traffic. 2011;12:672–81.

    Article  CAS  PubMed  Google Scholar 

  66. McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol. 2020;323:113076–106.

    Article  CAS  PubMed  Google Scholar 

  67. Bogan JS. Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem. 2012;81:507–32.

    Article  CAS  PubMed  Google Scholar 

  68. Stöckli J, Fazakerley DJ, James DE. GLUT4 exocytosis. J Cell Sci. 2011;124:4147–59.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bryant NJ, Gould GW. Insulin stimulated GLUT4 translocation - size is not everything! Curr Opin Cell Biol. 2020;65:28–34.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang C, Hu J, Wang W, Sun Y, Sun K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J. 2020;34:9563–74.

    Article  CAS  PubMed  Google Scholar 

  71. Rice S, Pellatt LJ, Bryan SJ, Whitehead SA, Mason HD. Action of metformin on the insulin-signaling pathway and on glucose transport in human granulosa cells. J Clin Endocrinol Metab. 2011;96:E427–35.

    Article  CAS  PubMed  Google Scholar 

  72. Chen SH, Liu XN. MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus. J Cell Mol Med. 2019;23:5895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banning A, Tomasovic A, Tikkanen R. Functional aspects of membrane association of reggie/flotillin proteins. Curr Protein Pept Sci. 2011;12:725–35.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao F, Zhang J, Liu YS, Li L, He YL. Research advances on flotillins. Virol J. 2011;8:479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kwiatkowska K, Matveichuk OV, Fronk J, Ciesielska A. Flotillins: At the intersection of protein S-palmitoylation and lipid-mediated signaling. Int J Mol Sci. 2020;21:2283–305.

    Article  CAS  PubMed Central  Google Scholar 

  76. Galazis N, Afxentiou T, Xenophontos M, Diamanti-Kandarakis E, Atiomo W. Proteomic biomarkers of type 2 diabetes mellitus risk in women with polycystic ovary syndrome. Eur J Endocrinol. 2013;168:R33–43.

    Article  CAS  PubMed  Google Scholar 

  77. Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F. Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J. 2006;20:705–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to all those who have helped me during the writing of the article. I gratefully acknowledge the help of Natural Science Foundation of Science and Technology Department of Jilin Province (grant number 20200201476JC, Jilin, China) that funded our research. Also, I would like to thank Mr. Li Zhou, Xiao Han, Wei Li, Ning Wang, Lan Yao, Yunhe Zhao, and Liqun Zhang, who contributed to the research work.

Code Availability

Not applicable.

Funding

This research was supported by Natural Science Foundation of Science and Technology Department of Jilin Province (grant number 20200201476JC, Jilin, China).

Author information

Authors and Affiliations

Authors

Contributions

Li Zhou and Xiao Han designed and performed the experiments, and wrote the manuscript. Wei Li, Ning Wang, and Lan Yao contributed to experimental work and data analysis. Yunhe Zhao conducted the experiments. Liqun Zhang revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Liqun Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 227 kb)

ESM 2

(XLSX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Han, X., Li, W. et al. N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2. Reprod. Sci. 29, 1305–1315 (2022). https://doi.org/10.1007/s43032-021-00664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00664-6

Keywords

Navigation