Skip to main content
Log in

Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients

  • Original Research Article
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this article, we are interested in the Gevrey properties of the formal power series solution in time of some partial differential equations with a power-law nonlinearity and with analytic coefficients at the origin of \({\mathbb {C}}^2\). We prove in particular that the inhomogeneity of the equation and the formal solution are together s-Gevrey for any \(s\geqslant s_c\), where \(s_c\) is a nonnegative rational number fully determined by the Newton polygon of the associated linear PDE. In the opposite case \(s<s_c\), we show that the solution is generically \(s_c\)-Gevrey while the inhomogeneity is s-Gevrey, and we give an explicit example in which the solution is \(s'\)-Gevrey for no \(s'<s_c\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility statement

data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. We denote \(\widetilde{f}\) with a tilde to emphasize the possible divergence of the series \(\widetilde{f}\).

  2. Observe that this fact is well-known in the case of the ODEs: the Gevrey order of the formal solutions of any semilinear meromorphic ordinary differential equations is given by the Newton polygon of its linear part—see [7, 47] for instance.

  3. The case \(\beta (X)\equiv 0\) corresponds to the linear case, and the case \(h(X)\equiv 0\) corresponds to the homogeneous case with the initial condition \(\varphi _j(x)\equiv 0\) for all \(j=0,...,\kappa -1\).

  4. These numbers were named in honor of the mathematician Eugène Charles Catalan (1814–1894). They appear in many probabilist, graphs and combinatorial problems. For example, they can be seen as the number of m-ary trees with i source-nodes, or as the number of ways of associating i applications of a given m-ary operation, or as the number of ways of subdividing a convex polygon into i disjoint (\(m+1\))-gons by means of non-intersecting diagonals. They also appear in theoretical computers through the generalized Dyck words. See for instance [13] and the references inside.

  5. Of course, this case only occurs when \(p>\kappa \).

References

  1. Balser, W.: Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke. Pac. J. Math. 188(1), 53–63 (1999)

    MATH  Google Scholar 

  2. Balser, W.: Formal power series and linear systems of meromorphic ordinary differential equations. Universitext. Springer, New-York (2000)

    MATH  Google Scholar 

  3. Balser, W.: Multisummability of formal power series solutions of partial differential equations with constant coefficients. J. Differ. Equ. 201(1), 63–74 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Balser, W., Loday-Richaud, M.: Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables. Adv. Dyn. Syst. Appl. 4(2), 159–177 (2009)

    MathSciNet  Google Scholar 

  5. Balser, W., Miyake, M.: Summability of formal solutions of certain partial differential equations. Acta Sci. Math. (Szeged) 65(3–4), 543–551 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Balser, W., Yoshino, M.: Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients. Funkcial. Ekvac. 53, 411–434 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Braaksma, B.L.J.: Multisummability of formal power series solutions of nonlinear meromorphic differential equations. Ann. Inst. Fourier (Grenoble) 42(3), 517–540 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Canalis-Durand, M., Ramis, J.P., Schäfke, R., Sibuya, Y.: Gevrey solutions of singularly perturbed differential equations. J. Reine Angew. Math. 518, 95–129 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Costin, O., Park, H., Takei, Y.: Borel summability of the heat equation with variable coefficients. J. Differ. Equ. 252(4), 3076–3092 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Gramchev, T., Lysik, G.: Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation. Banach Center Publ. 81, 213–226 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Hibino, M.: Borel summability of divergence solutions for singular first-order partial differential equations with variable coefficients, I & II. J. Differ. Equ. 227(2), 499–563 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Hibino, M.: On the summability of divergent power series solutions for certain first-order linear PDEs. Opuscula Math. 35(5), 595–624 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Hilton, P., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intell. 13(2), 64–75 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Ichinobe, K.: On \(k\)-summability of formal solutions for a class of partial differential operators with time dependent coefficients. J. Differ. Equ. 257(8), 3048–3070 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Klarner, D.A.: Correspondences between plane trees and binary sequences. J. Comb. Theory 9, 401–411 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Lastra, A., Malek, S.: On parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems. J. Differ. Equ. 259, 5220–5270 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Lastra, A., Malek, S.: On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems. Adv. Differ. Equ. 2015, 200 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Lastra, A., Malek, S., Sanz, J.: On Gevrey solutions of threefold singular nonlinear partial differential equations. J. Differ. Equ. 255, 3205–3232 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lastra, A., Tahara, H.: Maillet type theorem for nonlinear totally characteristic partial differential equations. Math. Ann. 377, 1603–1641 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Lutz, D.A., Miyake, M., Schäfke, R.: On the Borel summability of divergent solutions of the heat equation. Nagoya Math. J. 154, 1–29 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Lysik, G., Michalik, S.: Formal solutions of semilinear heat equations. J. Math. Anal. Appl. 341, 372–385 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Malek, S.: On the summability of formal solutions of linear partial differential equations. J. Dyn. Control Syst. 11(3), 389–403 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Malek, S.: On the summability of formal solutions of nonlinear partial differential equations with shrinkings. J. Dyn. Control Syst. 13(1), 1–13 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Malek, S.: On the Stokes phenomenon for holomorphic solutions of integrodifferential equations with irregular singularity. J. Dyn. Control Syst. 14(3), 371–408 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Malek, S.: On Gevrey functions solutions of partial differential equations with fuchsian and irregular singularities. J. Dyn. Control Syst. 15(2), 277–305 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Malek, S.: On Gevrey asymptotic for some nonlinear integro-differential equations. J. Dyn. Control Syst. 16(3), 377–406 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Malek, S.: On the summability of formal solutions for doubly singular nonlinear partial differential equations. J. Dyn. Control Syst. 18(1), 45–82 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Michalik, S.: Summability of divergent solutions of the \(n\)-dimensional heat equation. J. Differ. Equ. 229, 353–366 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Michalik, S.: Summability of formal solutions to the \(n\)-dimensional inhomogeneous heat equation. J. Math. Anal. Appl. 347, 323–332 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Michalik, S.: On the multisummability of divergent solutions of linear partial differential equations with constant coefficients. J. Differ. Equ. 249, 551–570 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Michalik, S.: Summability and fractional linear partial differential equations. J. Dyn. Control Syst. 16(4), 557–584 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Michalik, S.: Multisummability of formal solutions of inhomogeneous linear partial differential equations with constant coefficients. J. Dyn. Control Syst. 18(1), 103–133 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Michalik, S.: Corrigendum to “On the multisummability of divergent solutions of linear partial differential equations with constant coefficients” [J. Differ. Equ. 249 (3) (2010) 551–570]. J. Differ. Equ. 255, 2400–2401 (2013)

  34. Miyake, M.: Newton polygons and formal Gevrey indices in the Cauchy–Goursat–Fuchs type equations. J. Math. Soc. Jpn. 43(2), 305–330 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Miyake, M.: Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations. In: Partial Differential Equations and Their Applications (Wuhan, 1999), pp. 225–239. World Sci. Publ., River Edge (1999)

    Google Scholar 

  36. Miyake, M., Hashimoto, Y.: Newton polygons and Gevrey indices for linear partial differential operators. Nagoya Math. J. 128, 15–47 (1992)

    MathSciNet  MATH  Google Scholar 

  37. Miyake, M., Shirai, A.: Convergence of formal solutions of first order singular nonlinear partial differential equations in the complex domain. Ann. Polon. Math. 74, 215–228 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Miyake, M., Shirai, A.: Structure of formal solutions of nonlinear first order singular partial differential equations in complex domain. Funkcial. Ekvac. 48, 113–136 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Miyake, M., Shirai, A.: Two proofs for the convergence of formal solutions of singular first order nonlinear partial differential equations in complex domain. Surikaiseki Kenkyujo Kokyuroku Bessatsu Kyoto Univ. B37, 137–151 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Nagumo, M.: Über das Anfangswertproblem partieller Differentialgleichungen. Jpn. J. Math. 18, 41–47 (1942)

    MathSciNet  MATH  Google Scholar 

  41. Ouchi, S.: Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential equations. J. Math. Sci. Univ. Tokyo 2, 375–417 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Ouchi, S.: Multisummability of formal solutions of some linear partial differential equations. J. Differ. Equ. 185(2), 513–549 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Ouchi, S.: Borel summability of formal solutions of some first order singular partial differential equations and normal forms of vector fields. J. Math. Soc. Jpn. 57(2), 415–460 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Pliś, M.E., Ziemian, B.: Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables. Ann. Polon. Math. 67(1), 31–41 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis, Vol. I, vol. 125. Springer, Berlin, Göttingen, Heidelberg (1954)

    MATH  Google Scholar 

  46. Ramis, J.P.: Théorèmes d’indices Gevrey pour les équations différentielles ordinaires. Mem. Am. Math. Soc. 48, viii+95 (1984)

  47. Ramis, J.P., Sibuya, Y.: Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type. Asymptot. Anal. 2(1), 39–94 (1989)

    MathSciNet  MATH  Google Scholar 

  48. Remy, P.: Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients. J. Dyn. Control Syst. 22(4), 693–711 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Remy, P.: Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients. J. Dyn. Control Syst. 23(4), 853–878 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Remy, P.: Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems. J. Dyn. Control Syst. 26(1), 69–108 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Remy, P.: On the summability of the solutions of the inhomogeneous heat equation with a power-law nonlinearity and variable coefficients. J. Math. Anal. Appl. 494(2) (2021)

  52. Remy, P.: Gevrey index theorem for the inhomogeneous \(n\)-dimensional heat equation with a power-law nonlinearity and variable coefficients. Acta Sci. Math. (Szeged) 87(1–2), 163–181 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Shirai, A.: Maillet type theorem for nonlinear partial differential equations and Newton polygons. J. Math. Soc. Jpn. 53, 565–587 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Shirai, A.: Convergence of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type. Funkcial. Ekvac. 45, 187–208 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Shirai, A.: A Maillet type theorem for first order singular nonlinear partial differential equations. Publ. RIMS. Kyoto Univ. 39, 275–296 (2003)

    MathSciNet  MATH  Google Scholar 

  56. Shirai, A.: Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type. Surikaiseki Kenkyujo Kokyuroku Kyoto Univ. 1431, 94–106 (2005)

    Google Scholar 

  57. Shirai, A.: Alternative proof for the convergence of formal solutions of singular first order nonlinear partial differential equations. J. Sch. Educ. Sugiyama Jogakuen Univ. 1, 91–102 (2008)

    MathSciNet  Google Scholar 

  58. Shirai, A.: Gevrey order of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type. J. Sch. Edu. Sugiyama Jogakuen Univ. 6, 159–172 (2013)

    Google Scholar 

  59. Shirai, A.: Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type, part II. Opuscula Math. 35(5), 689–712 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Tahara, H.: Gevrey regularity in time of solutions to nonlinear partial differential equations. J. Math. Sci. Univ. Tokyo 18, 67–137 (2011)

    MathSciNet  MATH  Google Scholar 

  61. Tahara, H., Yamazawa, H.: Multisummability of formal solutions to the Cauchy problem for some linear partial differential equations. J. Differ. Equ. 255(10), 3592–3637 (2013)

    MathSciNet  MATH  Google Scholar 

  62. Walter, W.: An elementary proof of the Cauchy–Kowalevsky theorem. Am. Math. Mon. 92(2), 115–126 (1985)

    MathSciNet  MATH  Google Scholar 

  63. Yonemura, A.: Newton polygons and formal Gevrey classes. Publ. Res. Inst. Math. Sci. 26, 197–204 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Remy.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remy, P. Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients. Partial Differ. Equ. Appl. 4, 19 (2023). https://doi.org/10.1007/s42985-023-00236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-023-00236-0

Keywords

Mathematics Subject Classification

Navigation