Skip to main content

Extended Gevrey Regularity via the Short-Time Fourier Transform

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 554 Accesses

Abstract

We study the regularity of smooth functions whose derivatives are dominated by sequences of the form \(M_p^{\tau ,\sigma }=p^{\tau p^{\sigma }}\), τ > 0, σ ≥ 1. We show that such functions can be characterized through the decay properties of their short-time Fourier transforms (STFT), and recover (Cordero et al., Trans. Am. Math. Soc., 367 (2015), 7639–7663; Theorem 3.1) as the special case when τ > 1 and σ = 1, i.e. when the Gevrey type regularity is considered. These estimates lead to a Paley-Wiener type theorem for extended Gevrey classes. In contrast to the related result from Pilipović et al. (Sarajevo Journal of Mathematics, 14 (2) (2018), 251–264; J. Pseudo-Differ. Oper. Appl. (2019)), here we relax the assumption on compact support of the observed functions. Moreover, we introduce the corresponding wave front set, recover it in terms of the STFT, and discuss local regularity in such context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abdeljawad, M. Cappiello, J. Toft, Pseudo-differential calculus in anisotropic Gelfand-Shilov setting, Integr. Equ. Oper. Theory, 91 (26) (2019), https://doi.org/10.1007/s00020-019-2518-2

  2. M. Cappiello, J. Toft, Pseudo-differential operators in a Gelfand-Shilov setting, Math. Nachr., 290 (2017), 738–755

    Article  MathSciNet  Google Scholar 

  3. M. Cicognani, D. Lorenz, Strictly hyperbolic equations with coefficients low-regular win time and smooth in space, J. Pseudo-Differ. Oper. Appl., 9 (2018), 643–675.

    Article  MathSciNet  Google Scholar 

  4. J. Chung, S.-Y. Chung, D. Kim, A characterization for Fourier hyperfunctions, Publ. Res. Inst. Math. Sci., 30 (1994), 203–208

    Article  MathSciNet  Google Scholar 

  5. E. Cordero, S. Pilipović, L. Rodino, N. Teofanov, Localization operators and exponential weights for modulation spaces, Mediterranean Journal of Mathematics, 2 (2005), 381–394

    Article  MathSciNet  Google Scholar 

  6. E. Cordero, S. Pilipović, L. Rodino, N. Teofanov, Quasianalytic Gelfand-Shilov spaces with application to localization operators, Rocky Mountain Journal of Mathematics, 40 (2010), 1123–1147

    Article  MathSciNet  Google Scholar 

  7. E. Cordero, F. Nicola, L. Rodino, Gabor representations of evolution operators, Trans. Am. Math. Soc., 367 (2015), 7639–7663.

    Article  MathSciNet  Google Scholar 

  8. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the Lambert W function, Adv. Comput. Math., 5 (1996), 329–359.

    Article  MathSciNet  Google Scholar 

  9. H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report, University Vienna, 1983. and also in M. Krishna, R. Radha, S. Thangavelu (eds.), Wavelets and Their Applications, Allied Publishers, 99–140 (2003)

    Google Scholar 

  10. H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal., 86 (1989), 307–340

    Article  MathSciNet  Google Scholar 

  11. H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions II, Monatsh. f. Math. 108 (1989), 129–148

    Article  MathSciNet  Google Scholar 

  12. G. Friedlander, M. Joshi, The Theory of Distributions, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  13. I.M. Gelfand, G.E. Shilov, Generalized Functions II, Academic Press, New York, 1968.

    Google Scholar 

  14. K. Gröchenig, Foundations of Time-frequency analysis, Birkhäuser, Boston, 2001.

    Book  Google Scholar 

  15. K. Gröchenig, Weight functions in time-frequency analysis, in: L. Rodino, B.-W., Schulze, M. W. Wong (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Institute Comm., 52 (2007), 343–366

    Google Scholar 

  16. K. Gröchenig, G. Zimmermann, Hardy’s theorem and the short-time Fourier transform of Schwartz functions, J. London Math. Soc., 63 (2001), 205–214

    Article  MathSciNet  Google Scholar 

  17. A. Hoorfar, M. Hassani, Inequalities on the Lambert W function and hyperpower function, J. Inequalities in Pure and Applied Math., 9 (2008), 5pp.

    Google Scholar 

  18. L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. I: Distribution Theory and Fourier Analysis, Springer-Verlag, 1983.

    Google Scholar 

  19. H. Komatsu, Ultradistributions, I: Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), 25–105

    Google Scholar 

  20. F. Nicola, L. Rodino, Global Pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications 4, Birkhäuser Verlag, 2010.

    Google Scholar 

  21. S. Pilipović, B. Prangoski, On the characterizations of wave front sets via short-time Fourier transform, Math. Notes, 105 (1–2) (2019), 153–157

    Article  MathSciNet  Google Scholar 

  22. S. Pilipović, N. Teofanov, Wilson bases and ultra-modulation spaces, Math. Nachr., 242 (2002), 179–196

    Article  MathSciNet  Google Scholar 

  23. S. Pilipović, N. Teofanov, and F. Tomić, On a class of ultradifferentiable functions, Novi Sad Journal of Mathematics, 45 (2015), 125–142.

    MathSciNet  MATH  Google Scholar 

  24. S. Pilipović, N. Teofanov, F. Tomić, Beyond Gevrey regularity, J. Pseudo-Differ. Oper. Appl., 7 (2016), 113–140.

    Article  MathSciNet  Google Scholar 

  25. S. Pilipović, N. Teofanov, and F. Tomić, Superposition and propagation of singularities for extended Gevrey regularity, Filomat, 32 (2018), 2763–2782.

    Article  MathSciNet  Google Scholar 

  26. S. Pilipović, N. Teofanov, and F. Tomić, Regularities for a new class of spaces between distributions and ultradistributions, Sarajevo Journal of Mathematics, 14 (2) (2018), 251–264.

    MathSciNet  MATH  Google Scholar 

  27. S. Pilipović, N. Teofanov, and F. Tomić, A Paley-Wiener theorem in extended Gevrey regularity, J. Pseudo-Differ. Oper. Appl. (2019), https://doi.org/10.1007/s11868-019-00298-y

  28. A. Rainer, G. Schindl, Composition in ultradifferentiable classes, Studia Math, 224 (2) (2014), 97–131.

    Article  MathSciNet  Google Scholar 

  29. L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, 1993.

    Book  Google Scholar 

  30. M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, second edition (2001)

    Book  Google Scholar 

  31. N. Teofanov, Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process, 5 (2006), 225–242

    MathSciNet  MATH  Google Scholar 

  32. N. Teofanov, Gelfand-Shilov spaces and localization operators, Funct. Anal. Approx. Comput. 7 (2015), 135–158

    MathSciNet  MATH  Google Scholar 

  33. N. Teofanov, F. Tomić, Inverse closedness and singular support in extended Gevrey regularity, J. Pseudo-Differ. Oper. Appl., 8 (3) (2017), 411–421.

    Article  MathSciNet  Google Scholar 

  34. N. Teofanov, F. Tomić, Ultradifferentiable functions of class \(M^{\tau ,\sigma } _p\) and microlocal regularity, in: Oberguggenberger M., Toft J., Vindas J., Wahlberg P. (eds) Generalized Functions and Fourier Analysis. Operator Theory: Advances and Applications, vol 260. Birkhuser, Cham (2017), 193–213.

    Google Scholar 

  35. J. Toft, The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3 (2012), 145–227

    Article  MathSciNet  Google Scholar 

  36. J. Toft, Images of function and distribution spaces under the Bargmann transform, J. Pseudo-Differ. Oper. Appl. 8 (2017), 83–139

    Article  MathSciNet  Google Scholar 

  37. F. Tomić, A microlocal property of PDOs in \(\mathcal {E}_{(\tau ,\sigma )}(U)\), in The Second Conference on Mathematics in Engineering: Theory and Applications, Novi Sad, (2017), 7–12.

    Google Scholar 

Download references

Acknowledgements

This work is supported by MPNTR through Project 174024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Teofanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teofanov, N., Tomić, F. (2020). Extended Gevrey Regularity via the Short-Time Fourier Transform. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_25

Download citation

Publish with us

Policies and ethics