Skip to main content
Log in

Orbital stability and instability of periodic wave solutions for the \(\phi ^4\)-model

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this work we find explicit periodic wave solutions for the classical \(\phi ^4\)-model, and study their corresponding orbital stability/instability in the energy space. In particular, for this model we find at least four different branches of spatially-periodic wave solutions, which can be written in terms of Jacobi elliptic functions. Two of these branches correspond to superluminal waves (speeds larger than the speed of light), the third-one corresponds to sub-luminal waves and the remaining one corresponds to stationary complex-valued waves. In this work we prove the orbital instability of real-valued sub-luminal traveling waves. Furthermore, we prove that under some additional hypothesis, complex-valued stationary waves as well as the real-valued zero-speed sub-luminal wave are all stable. This latter case is related (in some sense) to the classical Kink solution of the \(\phi ^4\)-model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The present article under submission does not make use of any data from any repository. The results and theorems proved in this article do not require any supporting data, but the mathematical theory developed therein.

Notes

  1. Notice that, as far as local well-posedness in \(H^1\times L^2\) is concerned, there is no fundamental difference between these cases and our periodic setting.

  2. Notice that, for the case of Theorem 1.3, all three of these symmetries preserves the oddness of the solution.

  3. We call anti-snoidal to \(-\phi _{\mathrm {sn}}\), where \(\phi _{\mathrm {sn}}\) is the snoidal wave solution. Notice that \(-\phi _{\mathrm {sn}}\) is also a solution.

  4. Notice that if \(\phi _c\) is a solution, then so is \(-\phi _c\), and hence, there is no loss of generality in this assumption.

  5. We shall rigorously prove this inequality in the proof of Proposition 3.1 below.

  6. We shall rigorously prove this inequality in the proof of Proposition 3.2 below.

  7. See notation (7.2) below.

References

  1. Alejo, M.A., Muñoz, C., Palacios, J.M.: On the variational structure of breather solutions I: Sine–Gordon equation. J. Math. Anal. Appl. 453(2), 1111–1138 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alejo, M.A., Muñoz, C., Palacios, J.M.: On the variational structure of breather solutions II: periodic mKdV equation. Electron. J. Differ. Equ. 26, Paper No. 56 (2017)

  3. Alejo, M.A., Muñoz, C., Palacios, J.M.: On the asymptotic stability of the sine-Gordon kink in the energy space. arXiv:2003.09358

  4. Angulo Pava, J.: Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations. J. Differ. Equ. 235(1), 1–30 (2007)

    Article  Google Scholar 

  5. Angulo Pava, J., Natali, F.: Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions. SIAM J. Math. Anal. 40(3), 1123–1151 (2008)

    Article  MathSciNet  Google Scholar 

  6. Angulo, J., Natali, F.: (Non)linear instability of periodic traveling waves: Klein–Gordon and KdV type equations. Adv. Nonlinear Anal. 3(2), 95–123 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Springer, New York (1971)

    Book  Google Scholar 

  8. Chen, G., Palacios, J.M.: Orbital stability and instability of periodic wave solutions for \(\phi ^{4n}\)-models. arXiv:2008.04812

  9. Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrödinger and wave equations. arXiv:math/0311048

  10. Cuccagna, S.: On asymptotic stability in 3D of kinks for the \(\phi ^4\) model. Trans. Am. Math. Soc. 360(5), 2581–2614 (2008)

    Article  MathSciNet  Google Scholar 

  11. Deconinck, B., Kapitula, T.: The orbital stability of the cnoidal waves of the Korteweg-de Vries equation. Phys. Lett. A 374(39), 4018–4022 (2010)

    Article  MathSciNet  Google Scholar 

  12. Deconinck, B., McGill, P., Segal, B.: The stability spectrum for elliptic solutions to the sine-Gordon equation. Phys. D 360, 17–35 (2017)

    Article  MathSciNet  Google Scholar 

  13. Deconinck, B., Upsal, J.: The orbital stability of elliptic solutions of the focusing nonlinear Schrödinger equation. SIAM J. Math. Anal. 52(1), 1–41 (2020)

    Article  MathSciNet  Google Scholar 

  14. Deconinck, B., Nivala, M.: The stability analysis of the periodic traveling wave solutions of the mKdV equation. Stud. Appl. Math. 126(1), 17–48 (2011)

    Article  MathSciNet  Google Scholar 

  15. Delort, J.-M.: Existence globale et comportement asymptotique pour l’équation de Klein–Gordon quasi linéaire à données petites en dimension 1. Ann. Sci. Ecole Norm. Sup. 34(4), 1–61 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd ed, pp. xxii+749. American Mathematical Society, Providence (2010) (ISBN: 978-0-8218-4974-3)

  17. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  18. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  19. Hayashi, N., Naumkin, P.: The initial value problem for the cubic nonlinear Klein-Gordon equation. Z. Angew. Math. Phys. 59(6), 1002–1028 (2008)

    Article  MathSciNet  Google Scholar 

  20. Henry, D., Perez, J., Wreszinski, W.: Stability theory for solitary-wave solutions of scalar field equations. Commun. Math. Phys. 85(3), 351–361 (1982)

    Article  MathSciNet  Google Scholar 

  21. Ince, E.: The periodic Lamé functions. Proc. R. Soc. Edinb. 60, 47–63 (1940)

    Article  Google Scholar 

  22. Jones, C., Marangell, R., Miller, P., Plaza, R.: Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation. J. Differ. Equ. 257(12), 4632–4703 (2014)

    Article  MathSciNet  Google Scholar 

  23. Jones, C., Marangell, R., Miller, P., Plaza, R.: On the stability analysis of periodic sine-Gordon traveling waves. Phys. D 251, 63–74 (2013)

    Article  MathSciNet  Google Scholar 

  24. Jones, C., Marangell, R., Miller, P., Plaza, R.: On the spectral and modulational stability of periodic wavetrains for nonlinear Klein–Gordon equations. Bull. Braz. Math. Soc. (N.S.) 47(2), 417–429 (2016)

    Article  MathSciNet  Google Scholar 

  25. Kato, T.: Quasi-Linear Equations of Evolution with Applications to Partial Differential Equations, Lecture Notes in Math., vol. 448, pp. 25–70. Springer (1975)

  26. Klainerman, S.: Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Commun. Pure Appl. Math. 38(5), 631–641 (1985)

    Article  MathSciNet  Google Scholar 

  27. Klainerman: Sergiu Global existence for nonlinear wave equations. Commun. Pure Appl. Math. 33(1), 43–101 (1980)

    Article  Google Scholar 

  28. Kowalczyk, M., Martel, Y., Muñoz, C.: Kink dynamics in the \(\phi ^4\) model: asymptotic stability for odd perturbations in the energy space. J. Am. Math. Soc. 30(3), 769–798 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kowalczyk, M., Martel, Y., Muñoz, C.: Nonexistence of small, odd breathers for a class of nonlinear wave equations. Lett. Math. Phys. 107(5), 921–931 (2017)

    Article  MathSciNet  Google Scholar 

  30. Lindblad, H., Soffer, A.: Scattering for the Klein–Gordon equation with quadratic and variable coefficient cubic nonlinearities. Trans. Am. Math. Soc. 367(12), 8861–8909 (2015)

    Article  MathSciNet  Google Scholar 

  31. Magnus, W., Winkler, S.: Hill’s Equation, Tracts Pure Appl. Math., vol. 20. Wiley, New York (1976)

  32. Manton, N., Sutcliffe, P.: Topological Solitons, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  33. Muñoz, C., Palacios, J.M.: Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(4), 977–1034 (2019)

    Article  MathSciNet  Google Scholar 

  34. Natali, F., Cardoso, E.: Stability properties of periodic waves for the Klein-Gordon equation with quintic nonlinearity. Appl. Math. Comput. 224, 581–592 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Natali, F., Pastor Ferreira, A.: Stability and instability of periodic standing wave solutions for some Klein–Gordon equations. J. Math. Anal. Appl. 347(2), 428–441 (2008)

    Article  MathSciNet  Google Scholar 

  36. Peskin, M., Schroeder, D.: An Introduction to Quantum Field Theory, Advanced Book Program. Addison-Wesley Publishing Company, Reading (1995)

    Google Scholar 

  37. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV, Analysis of Operators. Academic Press, London (1978)

    MATH  Google Scholar 

  38. Rice, M.J.: Phys. Lett. A 71, 152 (1979)

    Article  Google Scholar 

  39. Shatah, J.: Stable standing waves of nonlinear Klein-Gordon equations. Commun. Math. Phys. 91(3), 313–327 (1983)

    Article  MathSciNet  Google Scholar 

  40. Shatah, J., Strauss, W.: Instability of nonlinear bound states. Commun. Math. Phys. 100(2), 173–190 (1985)

    Article  MathSciNet  Google Scholar 

  41. Shatah, J., Struwe, M.: Geometric Wave Equations, Courant Lecture Notes in Mathematics, vol. 2, pp. viii+153. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1998) (ISBN: 0-9658703-1-6; 0-8218-2749-9)

  42. Sterbenz, J.: Dispersive decay for the 1D Klein–Gordon equation with variable coefficient nonlinearities. Trans. Am. Math. Soc. 368(3), 2081–2113 (2016)

    Article  MathSciNet  Google Scholar 

  43. Vachaspati, T.: Kinks and Domain Walls, An Introduction to Classical and Quantum Solitons. Cambridge University Press, New York (2006)

Download references

Acknowledgements

The author is grateful to professor Fabio Natali for pointing out a flaw in the proof of Theorem 7.1 in a previous version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Palacios.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare that are relevant to the content of this article.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Appendix

Appendix

1.1 Proof of Proposition 3.3

In fact, first of all notice that for c fixed, \(T_{\mathrm {sb}}\) as in (3.20) regarded as a function of \(\beta _1\) satisfies \(T_{\mathrm {sb}}((1,\sqrt{2}))=(2\pi \sqrt{\omega _{\mathrm {sb}}},+\infty )\). Moreover, notice that due to condition (3.21) we have the bound \(2\pi \sqrt{\omega _{\mathrm {sb}}}<L\). Then, as an application of the Implicit Function Theorem, in order to conclude the uniqueness of \(\beta _1(c)\) it is enough to show that \(\tfrac{d}{d\beta _1}T_{\mathrm {sb}}<0\). Indeed, notice that by direct differentiation of the equation defining \(\kappa \) in (3.22) with respect to \(\beta _1\) we have

$$\begin{aligned} \dfrac{d\kappa }{d\beta _1}=-\dfrac{2}{\beta _1^2\sqrt{2-\beta _1^2}}<0 \quad \hbox {for all } \,\beta _1\in (1,\sqrt{2}). \end{aligned}$$

Therefore, recalling that \(K(\kappa )\) is an strictly increasing function, and due to the sign of \(\kappa '\) given by the latter inequality, by differentiating relation (3.20) with respect to \(\beta _1\) we conclude

$$\begin{aligned} \dfrac{d}{d\beta _1}T_{\mathrm {sb}}=-\dfrac{4\sqrt{2\omega _{sb}}}{\beta _1^2}K+\dfrac{4\sqrt{2\omega _\mathrm {sb}}}{\beta _1}K'(\kappa )\dfrac{d\kappa }{d\beta _1}<0, \end{aligned}$$
(7.10)

what finish the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, J.M. Orbital stability and instability of periodic wave solutions for the \(\phi ^4\)-model. Partial Differ. Equ. Appl. 3, 56 (2022). https://doi.org/10.1007/s42985-022-00185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-022-00185-0

Mathematics Subject Classification

Navigation