Skip to main content
Log in

Stability of Periodic Peakons for a Nonlinear Quartic \(\mu \)-Camassa–Holm Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove the orbital stability of periodic peaked traveling waves (peakons) for a nonlinear quartic \(\mu \)-Camassa–Holm equation. The equation is a \(\mu \)-version of the nonlinear quartic Camassa–Holm equation which was proposed by Anco and Recio (J Phys A Math Theor 52:125–203, 2019). The equation admits the periodic peakons. It is shown that the periodic peakons are orbitally stable under small perturbations in the energy space by finding inequalities related to the three conservation laws with global maximum and minimum of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Anco, S.C., Recio, E.: A general family of multi-peakon equations and their properties. J. Phys. A Math. Theor. 52, 125–203 (2019)

    Google Scholar 

  2. Anco, S.C., Da Silva, P., Freire, I.: A family of wave-breaking equations generalizing the Camassa–Holm and Novikov equations. J. Math. Phys. 56, 091506 (2015)

    ADS  MathSciNet  Google Scholar 

  3. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. Chen, R.M., Pelinovsky, D.E.: \(W^{1,\infty }\) instability of \(H^1\)-stable peakons in the Novikov equation. Dyn. Partial Differ. Equ. 18, 173–197 (2021)

    MathSciNet  Google Scholar 

  5. Chen, R.M., Lenells, J., Liu, Y.: Stability of the \(\mu \)-Camassa–Holm peakons. J. Nonlinear Sci. 23(1), 97–112 (2013)

    ADS  MathSciNet  Google Scholar 

  6. Chen, A., Deng, T., Qiao, Z.: Stability of peakons and periodic peakons for a nonlinear quartic Camassa–Holm equation. Monatsh. Math. 53 (2021). https://doi.org/10.1007/s00605-021-01597-7

  7. Chou, K.S., Qu, C.Z.: Integrable equations arising from motions of plane curves I. Phys. D 162, 9–33 (2002)

    MathSciNet  Google Scholar 

  8. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  Google Scholar 

  9. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    ADS  MathSciNet  Google Scholar 

  10. Constantin, A.: Particle trajectories in extreme Stokes waves. IMA J. Appl. Math. 77, 293–307 (2012)

    MathSciNet  Google Scholar 

  11. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  Google Scholar 

  12. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303–328 (1998)

    MathSciNet  Google Scholar 

  13. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    MathSciNet  Google Scholar 

  14. Constantin, A., Kolev, B.: Integrability of invariant metrics on the diffeomorphism group of the circle. J. Nonlinear Sci. 16, 109–122 (2006)

    ADS  MathSciNet  Google Scholar 

  15. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Rational Mech. Anal. 192, 165–186 (2009)

    ADS  MathSciNet  Google Scholar 

  16. Constantin, A., Mckean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    MathSciNet  Google Scholar 

  17. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D 157, 75–89 (2001)

    MathSciNet  CAS  Google Scholar 

  18. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  Google Scholar 

  19. Constantin, A., Kolev, B., Lenells, J.: Integrability of invariant metrics on the Virasoro group. Phys. Lett. A 350, 75–80 (2006)

    ADS  MathSciNet  CAS  Google Scholar 

  20. Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mech. 127, 193–207 (1998)

    MathSciNet  Google Scholar 

  21. Dika, K., Molinet, L.: Stability of multipeakons. Ann. Inst. H. PoincaréAnal. NonLin’eaire 18(4), 1517–1532 (2009)

    MathSciNet  Google Scholar 

  22. Fokas, A.S.: The Korteweg–de Vries equation and beyond. Acta Appl. Math. 39, 295–305 (1995)

    MathSciNet  Google Scholar 

  23. Fu, Y., Liu, Y., Qu, C.Z.: On the blow-up structure for the generalized periodic Camassa–Holm and Degasperis–Procesi equation. J. Funct. Anal. 262, 3125–3158 (2012)

    MathSciNet  Google Scholar 

  24. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)

    MathSciNet  Google Scholar 

  25. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4, 47-66 (1981/1982)

  26. Gao, Y., Li, L., Liu, J.G.: Patched peakon weak solutions of the modified Camassa–Holm equation. Phys. D 390, 15–35 (2019)

    MathSciNet  Google Scholar 

  27. Geyer, A., Pelinovsky, D.E.: Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation. SIAM J. Math. Anal. 51, 1188–1208 (2019)

    MathSciNet  Google Scholar 

  28. Geyer, A., Pelinovsky, D.E.: Spectral instability of the peaked periodic wave in the reduced Ostrovsky equation. Proc. Am. Math. Soc. 148, 5109–5125 (2020)

    MathSciNet  Google Scholar 

  29. Goldstein, R.E., Petrich, D.M.: The Korteweg–de Vries hierarchy as dynamics of closed curves in the plane. Phys. Rev. Lett. 67, 3203–3206 (1991)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  30. Gui, G., Liu, Y., Zhu, M.: On the wave-breaking Phenomena and Global Existence for the Generalized Periodic Camassa–Holm equation. Int. Math. Res. Not. 21, 4858–4903 (2012)

    MathSciNet  Google Scholar 

  31. Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    ADS  MathSciNet  Google Scholar 

  32. Guo, Z., Liu, X., Liu, X., Qu, C.Z.: Stability of peakons for the generalized modified Camassa–Holm equation. J. Differ. Equ. 266, 7749–7779 (2019)

    ADS  MathSciNet  Google Scholar 

  33. Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    ADS  MathSciNet  Google Scholar 

  34. Khesin, B., Lenells, J., Misiolek, G.: Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342(3), 617–656 (2008)

    MathSciNet  Google Scholar 

  35. Kouranbaeva, S.: The Camassa–Holm equation as geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)

    ADS  MathSciNet  Google Scholar 

  36. Lafortune, S., Pelinovsky, D.E.: Spectral instability of peakons in the \(b\)-family of the Camassa–Holm equations. arXiv:2105.13196

  37. Lenells, J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 151–163 (2004)

    MathSciNet  Google Scholar 

  38. Lenells, J.: Riemannian geometry on the diffeomorphism group of the circle. Ark. Mat. 45, 297–325 (2007)

    MathSciNet  Google Scholar 

  39. Lenells, J., Misiolek, G., Tiǵlay, F.: Integrable evolution equations on spaces of tensor densities and their peakon solutions. Commun. Math. Phys. 299, 129–161 (2010)

    ADS  MathSciNet  Google Scholar 

  40. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    ADS  MathSciNet  Google Scholar 

  41. Lin, Z.W., Liu, Y.: Stability of peakons for the Degasperis–Procesi equation. Commun. Pure Appl. Math. 62, 125–146 (2009)

    MathSciNet  Google Scholar 

  42. Liu, X.: Orbital stability of peakons for a modified Camassa–Holm equation with higher-order nonlinearity. Discrete Contin. Dyn. Syst. 38(11), 5505–5521 (2018)

    MathSciNet  Google Scholar 

  43. Liu, Y., Qu, C., Zhang, Y.: Stability of periodic peakons for the modified \(\mu \)-Camassa–Holm equation. Phys. D 250, 66–74 (2013)

    MathSciNet  Google Scholar 

  44. Liu, X., Liu, Y., Olver, P., Qu, C.Z.: Orbital stability of peakons for a generalization of the modified Camassa–Holm equation. Nonlinearity 27, 2297–2319 (2014)

    ADS  MathSciNet  Google Scholar 

  45. Lv, G., Pang, P., Wang, M.: Non-uniform dependence on initial data for the \(\mu \)-b equation. Z. Angew. Math. Phys. 64(5), 1543–1554 (2013)

    MathSciNet  Google Scholar 

  46. Lv, G., Wang, X.: HÖlder continuity on \(\mu \)-b equation. Nonlinear Anal. 102, 30–35 (2014)

    MathSciNet  Google Scholar 

  47. Lyons, T.: Particle trajectories in extreme Stokes waves over infinite depth. Discrete Contin. Dyn. Sys. 34, 3095–3107 (2014)

    MathSciNet  Google Scholar 

  48. Madiyeva, A., Pelinovsky, D.E.: Growth of perturbations to the peaked periodic waves in the Camassa–Holm equation. SIAM J. Math. Anal. 53, 3016–3039 (2021)

    MathSciNet  Google Scholar 

  49. Martel, Y., Merle, F., Tsai, T.P.: Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for subcritical gKdV equations. Commun. Math. Phys. 231(2), 347–373 (2002)

    ADS  MathSciNet  Google Scholar 

  50. Misiolek, G.: Shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    ADS  MathSciNet  Google Scholar 

  51. Moon, B.: The existence of the single peaked traveling waves to the \(\mu \)-Novikov equation. Appl. Anal. 97, 1540–1548 (2018)

    MathSciNet  Google Scholar 

  52. Moon, B.: Well-posedness and blow up criteria for a nonlinear quartic \(\mu \)-Camassa–Holm equation (2021) (submitted for publication)

  53. Moon, B.: Orbital stability of periodic peakons for the generalized modified Camassa–Holm equation. Discrete Contin. Dyn. Syst. S 14, 4409–4437 (2021)

    MathSciNet  Google Scholar 

  54. Natali, F., Pelinovsky, D.E.: Instability of \(H^1\)-stable peakons in the Camassa–Holm equation. J. Differ. Equ. 268, 7342–7363 (2020)

    ADS  Google Scholar 

  55. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    ADS  MathSciNet  CAS  Google Scholar 

  56. Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    ADS  MathSciNet  Google Scholar 

  57. Qu, C., Fu, Y.: Curvature blow-up for the higher-order Camassa–Holm equations. J. Dyn. Differ. Equ. 32(4), 1901–1939 (2020)

    MathSciNet  Google Scholar 

  58. Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

    ADS  MathSciNet  Google Scholar 

  59. Qu, C., Fu, Y., Liu, Y.: Well-posedness, wave breaking and peakons for a modified \(\mu \)-Camassa–Holm equation. J. Funct. Anal. 266, 433–477 (2014)

    MathSciNet  Google Scholar 

  60. Qu, C.Z., Zhang, Y., Liu, X.C., Liu, Y.: Orbital stability of periodic peakons to a generalized \(\mu \)-Camassa–Holm equation. Arch. Rational Mech. Anal. 211, 593–617 (2014)

    ADS  MathSciNet  Google Scholar 

  61. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196(4), 90–105 (2004)

    MathSciNet  Google Scholar 

  62. Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  Google Scholar 

  63. Wang, H., Fu, Y.: Non-uniform dependence on initial data for the modified \(\mu \)-Camassa–Holm equation. J. Differ. Equ. 261, 6099–6124 (2016)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for her/his valuable comments which has lead to significant improvement of the manuscript.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1F1A1A01048468).

Author information

Authors and Affiliations

Authors

Contributions

The present work in this paper is totally carried out by the author.

Corresponding author

Correspondence to Byungsoo Moon.

Ethics declarations

Conflict of Interest

No potential competing interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we verify explicitly that the functional \(H_1\) and \(H_2\) defined in Proposition 2 is conserved under the flow of a nonlinear quartic \(\mu \)-Camassa–Holm equation (2.1). The following three forms of a nonlinear quartic \(\mu \)-Camassa–Holm equation (2.1) are used:

$$\begin{aligned}&m_t+\left[ \frac{1}{4}\left( 2\mu (u)u-u_x^2\right) ^2+u(2\mu (u)u-u_x^2)m\right] _x=0,\\&u_t+\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) +\partial _x(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \\&\quad +\frac{1}{3}\mu (uu_x^3)=0,\\&u_{tx}+\partial _x\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) -\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \\&\quad +\mu \left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] =0. \end{aligned}$$

We also use the identities \(\mu \left[ (\mu -\partial _x^2)^{-1}u\right] =\mu (u)\) and \(\partial _x^2(\mu -\partial _x^2)^{-1}u=-u+\mu (u).\) We directly compute

$$\begin{aligned}&\quad \frac{dH_1}{dt}\\ {}&=\int _{\mathbb {S}}m_tu+mu_tdx\\ {}&=-\int _{\mathbb {S}}u\left[ \frac{1}{4}\left( 2\mu (u)u-u_x^2\right) ^2+u(2\mu (u)u-u_x^2)m\right] _xdx\\ {}&\quad -\int _{\mathbb {S}}m\left[ \left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) +\partial _x(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right. \\ {}&\quad \qquad \quad \qquad +\left. \frac{1}{3}\mu (uu_x^3)\right] dx\\ {}&=\int _{\mathbb {S}}\left[ \frac{1}{4}\left( 2\mu (u)u-u_x^2\right) ^2u_x+uu_x\left( 2\mu (u)u-u_x^2\right) m\right] dx\\ {}&\quad -\int _{\mathbb {S}}\left[ 2\mu (u)u^2u_xm-\frac{1}{3}uu_x^3m+m\partial _x(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right. \\ {}&\quad \qquad \quad \qquad \left. +\frac{1}{3}\mu (uu_x^3)m\right] dx\\ {}&=-\int _{\mathbb {S}}\left[ -2\mu (u)u^2u_xu_{xx}-\frac{1}{3}\mu (u)uu_x^3+\frac{1}{3}uu_x^3u_{xx} \right. \\ {}&\quad \qquad \quad -u_{xx}\partial _x(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+ 2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] +\left. \frac{1}{3}\mu (u)\mu (uu_x^3)\right] dx\\ {}&=-\int _{\mathbb {S}}\left[ \frac{5}{3}\mu (u)uu_x^3+\frac{1}{3}uu_x^3u_{xx}-u_x\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right. \\ {}&\quad \qquad \quad +\left. \frac{1}{3}\mu (u)\mu (uu_x^3)\right] dx\\ {}&=-\int _{\mathbb {S}}\left[ -\frac{1}{3}\mu (u)uu_x^3+\frac{1}{3}\mu (u)\mu (uu_x^3)\right] dx=0, \end{aligned}$$

where we use the following identities

$$\begin{aligned} \left[ \frac{1}{4}\left( 2\mu (u)u-u_x^2\right) ^2u\right] _x=\frac{1}{4}\left( 2\mu (u)u-u_x^2\right) ^2u_x+uu_x\left( 2\mu (u)u-u_x^2\right) m \end{aligned}$$

and

$$\begin{aligned}&\qquad -\int _{\mathbb {S}}u_x\partial _x^2(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] dx\\ {}&\quad =-\int _{\mathbb {S}}\left[ -u_x\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2{-}u_x^4\right] +u_x\mu \left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right] dx. \end{aligned}$$
$$\begin{aligned} \frac{dH_2}{dt}&=\int _{\mathbb {S}}\left[ 3\mu (u)^2u^2u_t+2\mu (u)uu_x^2u_t+2\mu (u)u^2u_xu_{xt}-\frac{1}{12}u_x^4u_t-\frac{1}{3}uu_x^3u_{xt}\right] dx\\ {}&=\int _{\mathbb {S}}\left[ \left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) u_t+\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) u_{xt}\right] dx\\ {}&=\int _{\mathbb {S}}\left[ \left( 3\mu (u)^2u^2-2\mu (u)uu_x^2-2\mu (u)u^2u_{xx}+\frac{1}{4}u_x^4+uu_x^2u_{xx}\right) u_t\right] dx\\ {}&=-\int _{\mathbb {S}}\left( \left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) -\partial _x\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) \right) \\ {}&\quad \times \left[ \left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) +\partial _x(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right. \\ {}&\quad \qquad \quad \left. +\frac{1}{3}\mu (uu_x^3)\right] dx\\ {}&=-\int _{\mathbb {S}}\left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) \\ {}&\quad \qquad \times \partial _x(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] dx\\ {}&\quad -\int _{\mathbb {S}}\frac{1}{3}\mu (uu_x^3)\left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) dx\\ {}&\quad -\int _{\mathbb {S}}\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) \mu \left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) dx\\ {}&=-\int _{\mathbb {S}}\left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) \\ {}&\quad \quad \qquad \times \partial _x(\mu -\partial _x^2)^{-1} \left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] dx\\ {}&\quad -\int _{\mathbb {S}}\left[ \frac{1}{3}\mu (uu_x^3)\left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) \right. \\ {}&\quad \qquad -\left. \frac{1}{3}uu_x^3\mu \left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) \right] dx\\ {}&=\int _{\mathbb {S}}(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \\ {}&\quad \quad \times \partial _x\left( 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right) dx\\ {}&=0, \end{aligned}$$

where we use

$$\begin{aligned}&-\int _{\mathbb {S}}\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) \partial _x^2(\mu -\partial _x^2)^{-1}\left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] dx\\&\quad =-\int _{\mathbb {S}}\left[ -\left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) \left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right. \\&\qquad +\left. \left( 2\mu (u)u^2u_x-\frac{1}{3}uu_x^3\right) \mu \left[ 3\mu (u)^2u^2+2\mu (u)uu_x^2-\frac{1}{12}u_x^4\right] \right] dx. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, B. Stability of Periodic Peakons for a Nonlinear Quartic \(\mu \)-Camassa–Holm Equation. J Dyn Diff Equat 36, 703–725 (2024). https://doi.org/10.1007/s10884-022-10156-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10156-z

Keywords

Mathematics Subject Classification

Navigation