Skip to main content
Log in

Phase transitions arising in stochastic ergodic control associated with viscous Hamilton–Jacobi equations with bounded inward drift

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with certain phase transition phenomena arising in a family of stochastic ergodic control problems having real parameter \(\beta \). We show that the large time behavior of the optimal diffusion changes drastically in the vicinity of some critical value \(\beta ={\beta _{c}}\). Specifically, the optimal diffusion is recurrent for \(\beta <{\beta _{c}}\), while it is transient for \(\beta >{\beta _{c}}\). We also investigate the large time behavior of the optimal diffusion for \(\beta ={\beta _{c}}\) which turns out to be different from the previous two cases and more subtle. Our proof is based on the Lyapunov method giving analytical criteria for recurrence and transience of diffusions. The key lies in the analysis of solutions to the associated viscous Hamilton–Jacobi equation with bounded inward drift. In particular, a refined version of the gradient estimate for solutions to viscous Hamilton–Jacobi equations plays a substantial role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arapostathis, A., Borkar, V.S., Ghosh, M.K.: Ergodic Control of Diffusion Processes. Cambridge University Press, New York (2012)

    MATH  Google Scholar 

  2. Arapostathis, A., Biswas, A., Saha, S.: Strict monotonicity of principal eigenvalues of elliptic operators in \({{\mathbb{R}}}^d\) and risk-sensitive control. J. Math. Pures Appl. 124, 169–219 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chasseigne, E., Ichihara, N.: Ergodic problems for viscous Hamilton-Jacobi equations with inward drift. SIAM J. Control Optim. 57, 23–52 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chasseigne, E., Ichihara, N.: Sharp estimates of the generalized principal eigenvalue for superlinear viscous Hamilton–Jacobi equations with inward drift, preprint. arXiv:1906.01289

  5. Cranston, M., Koralov, L., Molchanov, S., Vainberg, B.: Continuous model for homopolymers. J. Funct. Anal. 256, 2656–2696 (2009)

    Article  MathSciNet  Google Scholar 

  6. Davies, E. B.: Spectral theory and differential operators. Cambridge Studies in Advanced Mathematics, 42. Cambridge University Press, Cambridge, pp. 182 ISBN: 0-521-47250-4 (1995)

  7. Ichihara, N.: Recurrence and transience of optimal feedback processes associated with Bellman equations of ergodic type. SIAM J. Control Optim. 49, 1938–1960 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ichihara, N.: Large time asymptotic problems for optimal stochastic control with superlinear cost. Stoch. Process. Appl. 122, 1248–1275 (2012)

    Article  MathSciNet  Google Scholar 

  9. Ichihara, N.: Criticality of viscous Hamilton–Jacobi equations and stochastic ergodic control. J. Math. Pures Appl. 100, 368–390 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ichihara, N.: The generalized principal eigenvalue for Hamilton–Jacobi–Bellman equations of ergodic type. Ann. I. H. Poincaré AN 32, 623–650 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ichihara, N., Sheu, S.J.: Large time behavior of solutions of Hamilton–Jacobi–Bellman equations with quadratic nonlinearity in gradients. SIAM J. Math. Anal. 45, 279–306 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lions, P.-L.: Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J. Anal. Math. 45, 234–254 (1985)

    Article  Google Scholar 

  13. Murata, M.: Structure of positive solutions to \( (-{\Delta } + V )u = 0 \text{ in } {{ R}_n}\). Duke Math. J. 53, 869–943 (1986)

    Article  MathSciNet  Google Scholar 

  14. Nisio, M.: Stochastic control theory. Dynamic programming principle. 2nd edn. Probability Theory and Stochastic Modelling, 72. Springer, Tokyo, pp. 250 ISBN: 978-4-431-55122-5, 978-4-431-55123-2 (2015)

  15. Pinchover, Y.: On positive solutions of second order elliptic equations, stability results and classification. Duke Math. J. 57, 955–980 (1988)

    Article  MathSciNet  Google Scholar 

  16. Pinchover, Y.: Criticality and ground states for second order elliptic equations. J. Differ. Equ. 80, 237–250 (1989)

    Article  MathSciNet  Google Scholar 

  17. Pinchover, Y.: On criticality and ground states for second order elliptic equations, II. J. Differ. Equ. 87, 353–364 (1990)

    Article  MathSciNet  Google Scholar 

  18. Pinsky, R.G.: Positive harmonic functions and diffusion. Cambridge Studies in Advanced Mathematics, 45. Cambridge University Press, Cambridge, pp. 474. ISBN: 0-521-47014-5 (1995)

  19. Simon, B.: Large time behavior of the \(L^p\) norm of Schrödinger semigroups. J. Funct. Anal. 40, 66–83 (1981)

    Article  Google Scholar 

  20. Takeda, M.: Criticality and subcriticality of generalized Schrödinger forms. Ill. J. Math. 58, 251–277 (2014)

    Article  Google Scholar 

  21. Takeda, M., Tsuchida, K.: Criticality of generalized Schrödinger operators and differentiability of spectral functions. In: Stochastic Analysis and Related Topics in Kyoto, in: Adv. Stud. Pure Math., vol. 41, pp. 333–350. Math. Soc. Japan, Tokyo (2004)

  22. Takeda, M., Tsuchida, K.: Differentiability of spectral functions for symmetric \(\alpha \)-stable processes. Trans. Am. Math. Soc. 359, 4031–4054 (2007)

    Article  MathSciNet  Google Scholar 

  23. Touzi, N.: Optimal stochastic control, stochastic target problems, and backward SDE. With Chapter 13 by Angès Tourin. In: Fields institute Monographs, 29. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, pp. 214. ISBN: 978-1-4614-4285-1; 978-1-4614-4286-8 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Ichihara.

Additional information

Supported in part by JSPS KAKENHI Grant Number 18K03343.

This article is part of the section “Viscosity solutions - Dedicated to Hitoshi Ishii on the award of the 1st Kodaira Kunihiko Prize” edited by Kazuhiro Ishige, Shigeaki Koike, Tohru Ozawa, Senjo Shimizu.

Appendix

Appendix

In this appendix, we prove Theorem A.1 below, which is a slight refinement of [12, Théorème IV.1]. This kind of gradient estimates have been used in [3, 7,8,9,10] to obtain a bound of \(|D\phi |\). Here we establish an estimate which enables one to obtain the decay rate of \(|D\phi (x)|\) as \(|x|\rightarrow \infty \).

Let \(U\subset {{\mathbf {R}}^{d}}\) be a domain. We consider the elliptic equation

$$\begin{aligned} -\Delta \phi +g\cdot D\phi +G(x,D\phi ) -f=0\quad \text {in }\ U, \end{aligned}$$
(A.1)

where \(g\in C^1(U;{{\mathbf {R}}^{d}})\), \(G\in C^1(U\times {{\mathbf {R}}^{d}})\), and \(f\in C^1(U)\). We assume that G satisfies the following condition:

(G) There exist some \(m>1\), \(\kappa >0\), and \({M_1},{M_2},{N_1},{N_2}:U\rightarrow [0,\infty )\) such that, for all \(x\in U\) and \(p\in {{\mathbf {R}}^{d}}\),

$$\begin{aligned} G(x,p)\ge \kappa {|p|^{m}}, \quad |D_xG(x,p)|\le M_1(x)+M_2(x)|p|^{m},\quad |D_pG(x,p)|&\le N_1(x)+N_2(x)|p|^{m-1}. \end{aligned}$$

Theorem A.1

Let (G) hold. Then, there exists some \(K>0\) depending only on d, m, and \(\kappa \) such that, for any solution \(\phi \in C^3(U)\) of (A.1) and \(x_0\in U\), \(r>0\) with \(B_r(x_0)\subset U\),

$$\begin{aligned} \begin{aligned} \sup _{B_{r/2}(x_0)}|D\phi |&\le K\sup _{B_r(x_0)} \left( f_+^{\frac{1}{m}}+|Df|^{\frac{1}{2m-1}}+|g|^{\frac{1}{m-1}}+|Dg|^{\frac{1}{2m-2}} +M_1^{\frac{1}{2m-1}}+M_2^{\frac{1}{m-1}}\right) \\&\quad + K \left\{ (\sup _{B_r(x_0)}|g|^{\frac{1}{2m-2}}+N_1^{\frac{1}{2m-2}})r^{-\frac{1}{2m-2}}+(1+N_2^{\frac{1}{m-1}})r^{-\frac{1}{m-1}}\right\} . \end{aligned} \end{aligned}$$

where \(z_\pm :=\max \{\pm z,0\}\) for \(z\in {\mathbf {R}}\).

Proof

We set \(w:=(1/2)|D\phi |^2\). Then, \(Dw=(D^2\phi )( D\phi )\) and

$$\begin{aligned} \Delta w={\text {tr}}((D^2\phi )^2)+D(\Delta \phi )\cdot D\phi , \end{aligned}$$
(A.2)

where \({\text {tr}}(A)\) denotes the trace of a square matrix A. Since first and second terms of the right-hand side of (A.2) can be estimated as

$$\begin{aligned} {\text {tr}}( (D^2\phi )^2)&\ge \frac{1}{d}({\text {tr}}(D^2\phi ))^2=\frac{1}{d} (\Delta \phi )^2 =\frac{1}{d} (g\cdot D\phi +G+ f_--f_+)^2\\&\ge \frac{1}{3d}G^2-\frac{3}{d} |g|^2|D\phi |^2 -\frac{3}{d} {f_{+}^2} \end{aligned}$$

and

$$\begin{aligned} D(&\Delta \phi )\cdot D\phi \\&= D(g\cdot D\phi +G-f )\cdot D\phi \\&= (Dg)(D\phi )\cdot (D\phi )+ g\cdot (D^2\phi )(D\phi ) +D_xG\cdot D\phi + D_pG\cdot (D^2\phi )(D\phi )-Df\cdot D\phi \\&\ge -|Dg||D\phi |^2- (|g|+|D_pG|)|Dw|-(|D_xG| +|Df|)|D\phi |\\&\ge -|Dg||D\phi |^2-(|g|+N_1+N_2|D\phi |^{m-1})|Dw| -(M_1+M_2|D\phi |^{m}+|Df|)| D\phi |, \end{aligned}$$

respectively, we see by plugging them into (A.2) that

$$\begin{aligned} \begin{aligned} \Delta w&\ge \frac{1}{3d}G^2-\Big (\frac{3}{d}|g|^2+|Dg|\Big )|D\phi |^2-\frac{3}{d} {f_{+}^2}\\&\qquad -(M_1+|Df|)|D\phi |-M_2|D\phi |^{m+1}-(|g|+N_1+N_2|D\phi |^{m-1})| Dw|. \end{aligned} \end{aligned}$$
(A.3)

Now, let \(\zeta \in C^2(U)\) be any cut-off function such that \(\zeta \equiv 1\) in \(B_{1/2}\), \({\text {supp}}\zeta \subset B_1\), and \(0\le \zeta \le 1\) in \(B_1\). We set

$$\begin{aligned} \xi (x):=\Big \{\zeta \Big (\frac{x-x_0}{r}\Big )\Big \}^{\gamma },\quad u(x):=\xi (x)w(x) \end{aligned}$$

for \(x\in U\), where \(\gamma >1\) is some constant which will be determined later. Since \(u\equiv 0\) outside \(B_r(x_0)\), we observe that u attains its positive maximum at a point \({\hat{x}}\in B_r(x_0)\). In particular, we have \(u({\hat{x}})=\xi ({\hat{x}}) w({\hat{x}})>0\), \(Du({\hat{x}})=\xi ({\hat{x}}) Dw({\hat{x}})+w({\hat{x}})D\xi ({\hat{x}})=0\), and \(\Delta u({\hat{x}})\le 0\), which also implies that

$$\begin{aligned} Dw({\hat{x}})=-w({\hat{x}})\frac{D\xi ({\hat{x}})}{\xi ({\hat{x}})}=-\frac{1}{2}|D\phi ({\hat{x}})|^2\frac{D\xi ({\hat{x}})}{\xi ({\hat{x}})}. \end{aligned}$$

We now set \(Z:=\xi ({\hat{x}})|D\phi ({\hat{x}})|^{2m}\) and find an upper bound of Z. To this end, we first evaluate \(\Delta u\) at \(x={\hat{x}}\). In what follows, we drop \({\hat{x}}\) for the simplicity of notation. Then,

$$\begin{aligned} 0\ge \Delta u&=\xi \Delta w+2D\xi \cdot Dw +w\Delta \xi =\xi \Delta w-|D\phi |^2\frac{|D\xi |^2}{\xi }+\frac{1}{2} |D\phi |^2\Delta \xi \\&=\xi \Delta w-(\xi |D\phi |^{2m})^{\frac{1}{m}}\,(\xi ^{-\frac{m+1}{2m}}|D\xi |)^2+\frac{1}{2}(\xi |D\phi |^{2m})^{\frac{1}{m}}\,(\xi ^{-\frac{1}{m}}\Delta \xi )\\&=\xi \Delta w-(\xi ^{-\frac{m+1}{2m}}|D\xi |)^2Z^{\frac{1}{m}}-\frac{1}{2}(\xi ^{-\frac{1}{m}}|\Delta \xi |)Z^{\frac{1}{m}}. \end{aligned}$$

We next estimate the value of \(\xi \Delta w\) at \(x={\hat{x}}\). Since \(0\le \xi \le \xi ^{\delta }\le 1\) for any \(0\le \delta \le 1\) and \(2\xi |Dw|=|D\phi |^2|D\xi |\) at \(x={\hat{x}}\), we see in view of (A.3) that

$$\begin{aligned} \xi \Delta w&\ge \frac{\kappa ^2}{3d}(\xi |D\phi |^{2m})-\Big (\frac{3}{d} |g|^2+|Dg|\Big )(\xi |D\phi |^{2m})^{\frac{1}{m}}-\frac{3}{d} \xi {f_{+}^2}\\&\qquad -(M_1+|Df|)(\xi |D\phi |^{2m})^{\frac{1}{2m}}-M_2(\xi |D\phi |^{2m})^{\frac{m+1}{2m}}\\&\qquad -\frac{1}{2}(|g|+N_1)(\xi ^{-\frac{1}{m}}|D\xi |)(\xi |D\phi |^{2m})^{\frac{1}{m}}-\frac{1}{2} N_2(\xi ^{-\frac{m+1}{2m}}|D\xi |)(\xi |D\phi |^{2m})^{\frac{m+1}{2m}}\\&=\frac{\kappa ^2}{3d}Z-\Big (\frac{3}{d} |g|^2+|Dg|\Big )Z^{\frac{1}{m}}-\frac{3}{d} \xi {f_{+}^2}-(M_1+|Df|)Z^{\frac{1}{2m}}-M_2Z^{\frac{m+1}{2m}}\\&\qquad -\frac{1}{2}(|g|+N_1)(\xi ^{-\frac{1}{m}}|D\xi |)Z^{\frac{1}{m}} -\frac{1}{2} N_2(\xi ^{-\frac{m+1}{2m}}|D\xi |)Z^{\frac{m+1}{2m}}. \end{aligned}$$

Plugging this into the previous inequality, we obtain

$$\begin{aligned} Z&\le K\{ ( |g|^2+|Dg|)Z^{\frac{1}{m}} + {f_{+}^2} +(M_1+|Df|)Z^{\frac{1}{2m}} +M_2Z^{\frac{m+1}{2m}}\\&\quad +(|g|+N_1)(\xi ^{-\frac{1}{m}}|D\xi |)Z^{\frac{1}{m}} +N_2(\xi ^{-\frac{m+1}{2m}}|D\xi |)Z^{\frac{m+1}{2m}}\\&\quad +(\xi ^{-\frac{m+1}{2m}}|D\xi |)^2Z^{\frac{1}{m}} +(\xi ^{-\frac{1}{m}}|\Delta \xi |)Z^{\frac{1}{m}}\}, \end{aligned}$$

where \(K>0\) is some constant depending only on d and \(\kappa \). In the following, we denote by K various constants depending only on d, \(\kappa \), and m.

Now, we recall Young’s inequality to see that, for any \(L>0\) and \(\varepsilon >0\),

$$\begin{aligned} LZ^{\frac{1}{2m}}\le C_\varepsilon L^{\frac{2m}{2m-1}}+\varepsilon Z,\qquad LZ^{\frac{1}{m}}\le C_\varepsilon L^{\frac{m}{m-1}}+\varepsilon Z,\qquad LZ^{\frac{m+1}{2m}}\le C_\varepsilon L^{\frac{2m}{m-1}}+\varepsilon Z, \end{aligned}$$

where \(C_\varepsilon >0\) is a constant depending only on \(\varepsilon \) and m. Then, we have

$$\begin{aligned} Z&\le K\{{f_{+}^2}+(|g|^2+|Dg|)^{\frac{m}{m-1}}+(M_1+|Df|)^{\frac{2m}{2m-1}}+M_2^{\frac{2m}{m-1}}\\&\quad +(|g|+N_1)^{\frac{m}{m-1}}(\xi ^{-\frac{1}{m}}|D\xi |)^{\frac{m}{m-1}} +N_2^{\frac{2m}{m-1}}(\xi ^{-\frac{m+1}{2m}}|D\xi |)^{\frac{2m}{m-1}}\\&\quad +(\xi ^{-\frac{m+1}{2m}}|D\xi |)^{\frac{2m}{m-1}}+(\xi ^{-\frac{1}{m}}|\Delta \xi |)^{\frac{m}{m-1}}\}. \end{aligned}$$

We finally find upper bounds for \(\xi ^{-\frac{1}{m}}|D\xi |\), \(\xi ^{-\frac{m+1}{2m}}|D\xi |\), and \(\xi ^{-\frac{1}{m}}|\Delta \xi |\). Since \(\xi ^{-\frac{1}{m}}<\xi ^{-\frac{m+1}{2m}}\), it suffices to consider \(\xi ^{-\theta }|D\xi |\) and \(\xi ^{-\theta }|\Delta \xi |\) for \(\theta :=(m+1)/(2m)\). By choosing \(\gamma :=4m/(m-1)\), which is equivalent to \(\gamma -2-\gamma \theta =0\), we see by direct computations that

$$\begin{aligned} \xi ^{-\theta }|D\xi |&=\frac{\gamma }{r}\zeta ^{\gamma -1-\gamma \theta }|D\zeta |=\frac{\gamma }{r}\zeta |D\zeta |,\\ \xi ^{-\theta }|\Delta \xi |&\le \frac{\gamma }{r^2}\{\zeta ^{\gamma -1-\gamma \theta }|\Delta \zeta |+(\gamma -1)\zeta ^{\gamma -2-\gamma \theta }|D\zeta |^2\}=\frac{\gamma }{r^2}\{\zeta |\Delta \zeta |+(\gamma -1)|D\zeta |^2\}. \end{aligned}$$

Hence, there exists some \(C>0\) depending only on m, \(\sup _{B_1}|D\zeta |\), and \(\sup _{B_1}|\Delta \zeta |\) such that, at \({\hat{x}}\),

$$\begin{aligned} Z=\xi |D\phi |^{2m}&\le K({f_{+}^2}+|Df|^{\frac{2m}{2m-1}}+|g|^{\frac{2m}{m-1}}+|Dg|^{\frac{m}{m-1}} +M_1^{\frac{2m}{2m-1}}+M_2^{\frac{2m}{m-1}})\\&\quad + KC\{(|g|^{\frac{m}{m-1}}+N_1^{\frac{m}{m-1}})r^{-\frac{m}{m-1}}+(1+N_2^{\frac{2m}{m-1}})r^{-\frac{2m}{m-1}}\}. \end{aligned}$$

Since \(\xi \equiv 1\) in \(B_{r/2}(x_0)\), we see that

$$\begin{aligned} \sup _{x\in B_{r/2}(x_0)}|D\phi (x)|^2&=2\sup _{x\in B_{r/2}(x_0)}\xi (x)w(x) =2\sup _{x\in B_{r/2}(x_0)}u(x)\\&\le 2\sup _{x\in B_r(x_0)}u(x) =2u({\hat{x}}) =2\xi ({\hat{x}})w({\hat{x}})\\&=\xi ({\hat{x}})^{\frac{m-1}{m}}(\xi ({\hat{x}})|D\phi ({\hat{x}})|^{2m})^{\frac{1}{m}} \le Z^{\frac{1}{m}}, \end{aligned}$$

which implies the desired estimate. Hence, we have completed the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichihara, N. Phase transitions arising in stochastic ergodic control associated with viscous Hamilton–Jacobi equations with bounded inward drift. SN Partial Differ. Equ. Appl. 2, 15 (2021). https://doi.org/10.1007/s42985-021-00072-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42985-021-00072-0

Keywords

Mathematics Subject Classification

Navigation