Skip to main content
Log in

Finding the Jump Rate for Fastest Decay in the Goldstein–Taylor Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is about the rate of convergence to equilibrium for hypocoercive linear kinetic equations. We look for the spatially dependent jump rate which yields the fastest decay rate of perturbations. For the Goldstein–Taylor model, we show (i) that for a locally optimal jump rate the spectral bound is determined by multiple, possibly degenerate, eigenvectors and (ii) that globally the fastest decay is obtained with a spatially homogeneous jump rate. Our proofs rely on a connection to damped wave equations and a relationship to the spectral theory of Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One could also prove \(c=\int _0^{2\pi } (j_1(y)^2 - \rho _1(y)^2)\, \mathrm {d}y\).

References

  1. Achleitner, F., Arnold, A., Carlen, E.A.: On Linear Hypocoercive BGK Models. In: Springer Proceedings in Mathematics & Statistics (2016), 1–37. ISSN: 2194-1017. https://doi.org/10.1007/978-3-319-32144-8_1

  2. Achleitner, F., Arnold, A., Signorello, B.: On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition. In: Springer Proceedings in Mathematics & Statistics (2019), 241–264. ISSN: 2194- 1017. https://doi.org/10.1007/978-3-030-15096-9_6

  3. Ammari, K., Castro, C.: Numerical approximation of the best decay rate for some dissipative systems. SIAM J. Numer. Anal. 57(2), 681–701 (2019). https://doi.org/10.1137/17m1160057. ISSN: 1095-7170

  4. Arnold, A., Einav, A., Signorello, B., Wöhrer, T.: Large time convergence of the nonhomogeneous Goldstein-Taylor equation. J. Stat. Phys. 182(2), (2021). https://doi.org/10.1007/s10955-021-02702-8. ISSN: 1572-9613

  5. Bernard, É., Salvarani, F.: On the exponential decay to equilibrium of the degenerate linear Boltzmann equation. J. Funct. Anal. 265(9), 1934–1954 (2013). https://doi.org/10.1016/j.jfa.2013.06.012. ISSN: 0022-1236

  6. Bernard, É., Salvarani, F.: Optimal estimate of the spectral gap for the degenerate Goldstein- Taylor model. J. Stat. Phys. 153.2 (2013). Correction published in 181, 1470-1471(2020), 363–375. ISSN: 1572-9613. https://doi.org/10.1007/s10955-013-0825-6

  7. Bou-Rabee, N., Eberle, A., Zimmer, R.: Coupling and convergence for Hamiltonian Monte Carlo. Ann. Appl. Probab. 30(3), 1209–1250 (2020). https://doi.org/10.1214/19-AAP1528. ISSN: 1050-5164

  8. Castro, C., Cox, S.J.: Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39(6), 1748–1755 (2001). https://doi.org/10.1137/s0363012900370971. ISSN: 1095-7138

  9. Cox, S., Zuazua, E.: The rate at which energy decays in a damped String. Commun. Partial Differ. Equ. 19(1–2), 213–243 (1994). https://doi.org/10.1080/03605309408821015. ISSN: 1532-4133

  10. Cox, S.J.: Designing for Optimal Energy Absorption II, The Damped Wave Equation. Control Estim. Distrib. Parameter Syst. (1998), 103–109. https://doi.org/10.1007/978-3-0348-8849-3_8

  11. Daners, D.: Krahn’s proof of the Rayleigh conjecture revisited. English. Arch. Math. 96(2), 187–199 (2011). https://doi.org/10.1007/s00013-010-0218-x. ISSN: 0003-889X

  12. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015). https://doi.org/10.1090/S0002-9947-2015-06012-7. ISSN: 0002-9947

  13. Eberle, A., Guillin, A., Zimmer, R.: Couplings and quantitative contraction rates for Langevin dynamics. Ann. Probab. 47(4), 1982–2010 (2019). https://doi.org/10.1214/18-AOP1299. ISSN: 0091-1798

  14. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. Vol. 194. Graduate Texts in Mathematics. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Springer-Verlag, New York, 2000, pp. xxii+586. ISBN: 0-387-98463-1

  15. Faber, G.: Beweis, daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. German. Münch. Ber. 1923(169–172), 1923 (1923)

  16. Fahroo, F., Ito, K.: Optimal absorption design for damped elastic systems. In: 2006 American Control Conference (2006). https://doi.org/10.1109/acc.2006.1655331

  17. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B 73(2), 123–214 (2011). https://doi.org/10.1111/j.1467-9868.2010.00765.x. ISSN: 1369-7412

  18. Haraux, A., Liard, T., Privat, Y.: How to estimate observability constants of one-dimensional wave equations? Propagation versus spectral methods. J. Evol. Equat. 16(4), 825–856 (2016). https://doi.org/10.1007/s00028-016-0321-y. ISSN: 1424-3202

  19. Hébrard, P., Henrott, A.: Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48(3–4), 199–209 (2003). https://doi.org/10.1016/s0167-6911(02)00265-7. ISSN: 0167-6911

  20. Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4(3), 497–510 (1974). https://doi.org/10.1216/rmj-1974-4-3-497. ISSN: 0035-7596

  21. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. German. In: Math. Ann. 94, 97–100 (1925). https://doi.org/10.1007/BF01208645. ISSN: 0025-5831

  22. Lebeau, G.: Équations des ondes amorties. In: Séminaire sur les Équations aux Dérivées Partielles, 1993–1994. École Polytech., Palaiseau, 1994, Exp. No. XV, 16

  23. Miclo, L., Monmarché, P.: Étude spectrale minutieuse de processus moins indécis que les autres. French. In: Séminaire de probabilités XLV. Cham: Springer, 2013, pp. 459–481. ISBN: 978-3-319-00320-7; 978- 3-319-00321-4. https://doi.org/10.1007/978-3-319-00321-4_18

  24. Münch, A., Pedregal, P., Periago, F.: Optimal design of the damping set for the stabilization of the wave equation. J. Differ. Equ. 231(1), 331–358 (2006). https://doi.org/10.1016/j.jde.2006.06.009. ISSN: 0022-0396

  25. Privat, Y., Zuazua, E.T.E.: Optimal observation of the one-dimensional wave equation. J. Fourier Anal. Appl. 19(3), 514–544 (2013). https://doi.org/10.1007/s00041-013-9267-4 ISSN: 1531-5851

  26. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202.950 (2009), pp. iv+141. ISSN: 0065-9266. https://doi.org/10.1090/S0065-9266-09-00567-5

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Hausdorff Research Institute for Mathematics (Bonn), through the Junior Trimester Program on Kinetic Theory. The authors thank Clément Mouhot, Laurent Desvillettes, Iván Moyano for the iscussions on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Dietert.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietert, H., Evans, J. Finding the Jump Rate for Fastest Decay in the Goldstein–Taylor Model. J Stat Phys 188, 1 (2022). https://doi.org/10.1007/s10955-022-02925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02925-3

Keywords

Navigation