Skip to main content
Log in

Liouville type theorems for stationary Navier–Stokes equations

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We show that any smooth stationary solution of the 3D incompressible Navier–Stokes equations in the whole space, the half space, or a periodic slab must vanish under the condition that for some \(0 \le \delta \le 1<L\) and \(q=6(3-\delta )/(6-\delta )\),

$$\begin{aligned} \liminf _{R \rightarrow \infty } \frac{1}{R} \Vert u\Vert ^{3-\delta }_{L^{q}(R<|x|<LR)}=0. \end{aligned}$$

We also prove sufficient conditions allowing shrinking radii ratio \(L= 1+R^{-\alpha }\). Similar results hold on a slab with zero boundary condition by assuming stronger decay rates. We do not assume global bound of the velocity. The key is to estimate the pressure locally in the annuli with radii ratio L arbitrarily close to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrillo, B., Pan, X., Zhang, Q.S., Zhao, N.: Decay and vanishing of some D-solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 237(3), 1383–1419 (2020)

    Article  MathSciNet  Google Scholar 

  2. Chae, D.: Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326(1), 37–48 (2014)

    Article  MathSciNet  Google Scholar 

  3. Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in \({\mathbb{R}}^3\). J. Differ. Equ. 261(10), 5541–5560 (2016)

    Article  Google Scholar 

  4. Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier–Stokes equations. Calc. Var. Part. Differ. Equ. 58(3), 11 (2019)

    Article  MathSciNet  Google Scholar 

  5. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Linearized Steady Problems, vol 1: Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994)

    Google Scholar 

  6. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations: Steady-state problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    Google Scholar 

  7. Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Kang, K.: On regularity of stationary Stokes and Navier–Stokes equations near boundary. J. Math. Fluid Mech. 6(1), 78–101 (2004)

    Article  MathSciNet  Google Scholar 

  9. Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions. J. Funct. Anal. 272(2), 804–818 (2017)

    Article  MathSciNet  Google Scholar 

  10. Kozono, H., Terasawa, Y., Wakasugi, Y.: Asymptotic properties of steady solutions to the 3D axisymmetric Navier–Stokes equations with no swirl. https://arxiv.org/abs/2004.13471

  11. Lin, C.-L., Uhlmann, G., Wang, J.-N.: Asymptotic behavior of solutions of the stationary Navier–Stokes equations in an exterior domain. Indiana Univ. Math. J. 60(6), 2093–2106 (2011)

    Article  MathSciNet  Google Scholar 

  12. Pilekcas, K.: On the asymptotic behavior of solutions of a stationary system of Navier–Stokes equations in a domain of layer type. Mat. Sb. 193(12), 69–104 (2002). (Translation in Sb. Math. 193 (2002), no. 11-12, 1801–1836)

    Article  MathSciNet  Google Scholar 

  13. Pileckas, K., Specovius-Neugebauer, M.: Asymptotics of solutions to the Navier–Stokes system with nonzero flux in a layer-like domain. Asymptot. Anal. 69(3–4), 219–231 (2010)

    Article  MathSciNet  Google Scholar 

  14. Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29(8), 2191–2195 (2016)

    Article  MathSciNet  Google Scholar 

  15. Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra i Analiz 30(2), 238–248 (2018). (Reprinted in St. Petersburg Math. J. 30 (2019), no. 2, 321-328)

    MathSciNet  Google Scholar 

  16. Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier–Stokes equations. Algebra i Analiz 31(2), 269–278 (2019). (Reprinted in St. Petersburg Math. J. 31 (2020), no. 2, 387-393)

    MathSciNet  Google Scholar 

  17. Šverák, V., Tsai, T.-P.: On the spatial decay of 3-D steady-state Navier–Stokes flows. Commun. Part. Differ. Equ. 25(11–12), 2107–2117 (2000)

    Article  MathSciNet  Google Scholar 

  18. Tsai, T.-P.: Lectures on Navier–Stokes Equations. Graduate Studies in Mathematics. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  19. Wang, W.: Remarks on Liouville type theorems for the 3D steady axially symmetric Navier–Stokes equations. J. Differ. Equ. 266(10), 6507–6524 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Tsai was partially supported by NSERC Grant RGPIN-2018-04137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Peng Tsai.

Additional information

Dedicated to Hideo Kozono on the occasion of his 60th birthday.

This article is part of the topical collection "Mathematical Fluid Mechanics and Related Topics: In Honor of Professor Hideo Kozono's 60th Birthday" edited by Kazuhiro Ishige, Tohru Ozawa, Senjo Shimizu, and Yasushi Taniuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, TP. Liouville type theorems for stationary Navier–Stokes equations. SN Partial Differ. Equ. Appl. 2, 10 (2021). https://doi.org/10.1007/s42985-020-00056-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00056-6

Navigation