Skip to main content
Log in

Decay and Vanishing of some D-Solutions of the Navier–Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

An old problem since Leray (J Math Pure Appl (French) 9:1–82, 1933) asks whether homogeneous D-solutions of the 3 dimensional Navier–Stokes equation in \({\mathbb {R}}^3\) or some noncompact domains are 0. In this paper, we give a positive solution to the problem in two cases: (1) the full 3 dimensional slab case \({\mathbb {R}}^2 \times [0, 1]\) with Dirichlet boundary condition (Theorem 1.1); (2) when the solution is axially symmetric and periodic in the vertical variable (Theorem 1.3). Also, for the slab case, we prove that even if the Dirichlet integral has some growth, axially symmetric solutions with Dirichlet boundary condition must be swirl free, namely \(u^\theta =0\), thus reducing the problem to essentially a “2 dimensional” problem. In addition, a general D-solution (without the axial symmetry assumption) vanishes in \(\mathbb {R}^3\) if, in spherical coordinates, the positive radial component of the velocity decays at order -1 of the distance. The paper is self contained comparing with (Carrillo et al. in Funct Anal, 2020. https://doi.org/10.1016/j.jfa.2020.108504) although the general idea is related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681, 1980

    MathSciNet  MATH  Google Scholar 

  2. Bogovskiĭ, M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium, (Russian) Dokl. Akad. Nauk SSSR248(5), 1037–1040, 1979

    MathSciNet  Google Scholar 

  3. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad, (Russian) Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, pp. 5C40, 149, Trudy Sem. S. L. Soboleva, No. 1, Akad, p. 1980. Otdel., Inst. Mat., Novosibirsk, Nauk SSSR Sibirsk 1980

  4. Chae, D.: Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations. Commun. Math. Phys. 326(1), 37–48, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  5. Choe, H.J., Jin, B.J.: Asymptotic properties of axis-symmetric D-solutions of the Navier-Stokes equations. J. Math. Fluid Mech. 11(2), 208–232, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  6. Carrillo, B., Pan, X., Zhang, Q.S.: Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations. J. Funct. Anal. 2020. https://doi.org/10.1016/j.jfa.2020.108504

    MathSciNet  MATH  Google Scholar 

  7. Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier-Stokes equations in \({\mathbb{R}}^3\). J. Differ. Equ. 261(10), 5541–5560, 2016

    ADS  MATH  Google Scholar 

  8. Chen, C.C., Strain, R.M., Tsai, T.P., Yau, H.T.: Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. Int. Math Res. Notices8, artical ID rnn016, 31, 2008

    MATH  Google Scholar 

  9. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn. Springer Monographs in MathematicsSpringer, New York 2011

    MATH  Google Scholar 

  10. Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)5(2), 381–404, 1978

    MathSciNet  MATH  Google Scholar 

  11. Kahane, Charles: On the spatial analyticity of solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 33, 386–405, 1969

    ADS  MathSciNet  MATH  Google Scholar 

  12. Koch, G., Nadirashvili, N., Seregin, G., Sverak, V.: Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 203(1), 83–105, 2009

    MathSciNet  MATH  Google Scholar 

  13. Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions. J. Funct. Anal. 272(2), 804–818, 2017

    MathSciNet  MATH  Google Scholar 

  14. Leray, J.: Étude de diverses équations intégrales non lin eaires et de quelques probl emes que pose l’hydrodynamique. J. Math. Pure Appl. (French)9, 1–82, 1933

    MATH  Google Scholar 

  15. Lei, Z., Zhang, Q.S.: A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations. J. Funct. Anal. 261, 2323–2345, 2011

    MathSciNet  MATH  Google Scholar 

  16. Lei, Z., Ren, X., Zhang, Q.S.: On Ancient Periodic Solutions to Axially-Symmetric Navier-Stokes Equations, arXiv:1902.11229.

  17. Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions: Construction and Applications, De Gruyter Studies in Mathematics, 42, p. xii+435. Walter de Gruyter & Co., Berlin 2012. ISBN: 978-3-11-025302-3

    MATH  Google Scholar 

  18. Piletskas, K.: On the asymptotic behavior of solutions of a stationary system of Navier-Stokes equations in a domain of layer type. (Russian) Mat. Sb. 193(12), 69–104, 2002. translation in Sb. Math. 193 (2002), no. 11-12, 1801-1836

    MathSciNet  MATH  Google Scholar 

  19. Pileckas, K., Specovius-Neugebauer, M.: Asymptotics of solutions to the Navier-Stokes system with nonzero flux in a layer-like domain. Asymptot. Anal. 69(3–4), 219–231, 2010

    MathSciNet  MATH  Google Scholar 

  20. Seregin, G.: Liouville type theorem for stationary Navier-Stokes equations. Nonlinearity29(8), 2191–2195, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  21. Weng, S.: Decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equationsJ. Math. Fluid Mech. 20(1), 7–25, 2017

    MathSciNet  Google Scholar 

  22. Zhang, Q.S.: Global solutions of Navier-Stokes equations with large \(L^2\) norms in a new function space. Adv. Differ. Equ. 9(5–6), 587–624, 2004

    MATH  Google Scholar 

  23. Zhang, Q.S.: Local estimates on two linear parabolic equations with singular coefficients. Pac. J. Math. 223(2), 367–396, 2006. Addendum, arXiv:1905.13329.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Professors Zhen Lei, Vladimir Šverák and Shangkun Weng, and Dr. Zijin Li for helpful conversations. X. H. Pan is supported by Natural Science Foundation of Jiangsu Province (No. SBK2018041027) and National Natural Science Foundation of China (No. 11801268). Q. S. Zhang wishes to thank the Simons Foundation (Grant 282153) for its support , and is grateful to Fudan University for its hospitality during his visit. Na Zhao is supported by China Postdoctoral Science Foundation (No.2019TQ0042). Finally, thanks go to the anonymous referee for the careful evaluation and helpful corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi S. Zhang.

Additional information

Communicated by C. De Lellis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we are devoted to proving the Lemma 5.2 which is equivalent to the following estimates:

$$\begin{aligned} |G(x,y)|\lesssim \left\{ \begin{aligned} \begin{array}{ll} \frac{1}{|x'-y'|+|x_3-y_3|}&{}|x'-y'|<1,\\ \frac{1}{|x'-y'|^2} &{} |x'-y'|>1, \end{array} \end{aligned} \right. \end{aligned}$$
(A.14)

and

$$\begin{aligned} |\partial _{x',y'}G(x,y)|\lesssim \left\{ \begin{aligned} \begin{array}{ll} \frac{1}{|x'-y'|^2+|x_3-y_3|^2} &{} |x'-y'|<1,\\ \frac{1}{|x'-y'|^3} &{} |x'-y'|>1. \end{array} \end{aligned} \right. \end{aligned}$$
(A.15)

The proof is by direct computation. Alternatively, one can also first consider the heat kernel with Dirichlet boundary condition on \({\mathbb {R}}^2 \times [0, 1]\), which has fast decay in time. Then one can integrate out the time variable to obtain the Green’s function estimate. This was the route taken in [6]. We only show the proof of (A.14), and the proof of (A.15) will be essentially the same and we omit the details.

For simplification of notation and without cause of confusion, we denote

$$\begin{aligned} k_{n,-,+}= & {} \sqrt{|x'-y'|^2+|x_3-y_3+2n|^2},\quad k_{n,+,-}{=}\sqrt{|x'-y'|^2{+}|x_3+y_3{-}2n|^2},\\ k_{n,-,-}= & {} \sqrt{|x'-y'|^2+|x_3-y_3-2n|^2},\quad k_{n,+,+}{=}\sqrt{|x'-y'|^2{+}|x_3+y_3{+}2n|^2}. \end{aligned}$$

Case 1:\(\varvec{|x'-y'|<1}\)

$$\begin{aligned} G(x,y)= & {} \frac{1}{4\pi }\sum \limits ^{+\infty }_{n=-\infty }\bigg \{\frac{1}{k_{n,-,+}} -\frac{1}{k_{n,+,-}}\bigg \}\\= & {} \frac{1}{4\pi }\underbrace{\bigg \{\frac{1}{k_{0,-,+}}-\frac{1}{k_{0,+,-}} \bigg \}}_{I_1}+\frac{1}{4\pi }\underbrace{\bigg \{\frac{1}{k_{1,-,+}}-\frac{1}{k_{1,+,-}} \bigg \}}_{I_2}\\&+\frac{1}{4\pi }\sum \limits ^{n\ne 0,1}_{n\in {\mathbb {Z}}}\underbrace{\bigg \{\frac{1}{k_{n,-,+}} -\frac{1}{k_{n,+,-}}\bigg \}}_{I_{3,n}}. \end{aligned}$$

It is easy to see that

$$\begin{aligned} |I_1|+|I_2|\lesssim \frac{1}{\sqrt{|x'-y'|^2+|x_3-y_3|^2}}. \end{aligned}$$
(A.16)

We compute \(I_3\) as follows:

$$\begin{aligned} |I_{3,n}|\lesssim & {} \frac{|k_{n,+,-}-k_{n,-,+}|}{k_{n,-,+}k_{n,+,-}}\nonumber \\= & {} \frac{|k^2_{n,+,-}-k^2_{n,-,+}|}{k_{n,-,+}k_{n,+,-}(k_{n,-,+}+k_{n,+,-})}\nonumber \\= & {} \frac{|4x_3(y_3-2n)|}{k_{n,-,+}k_{n,+,-}(k_{n,-,+}+k_{n,+,-})}. \end{aligned}$$
(A.17)

When \(n\in {\mathbb {Z}},n\ne 0,1\), we have

$$\begin{aligned} |x_3+y_3-2n|\gtrsim |n|,\quad |x_3-y_3+2n|\gtrsim |x_3-y_3|+|n|, \end{aligned}$$

which indicates that

$$\begin{aligned} k_{n,-,+}\gtrsim |x'-y'|+|x_3-y_3|+|n|,\quad k_{n,+,-}\gtrsim |n|. \end{aligned}$$

Inserting the above inequality into (A.17), we have

$$\begin{aligned} |I_{3,n}|\lesssim & {} \frac{1}{|n|\sqrt{|x'-y'|^2+|x_3-y_3|^2+n^2}}, \end{aligned}$$

so

$$\begin{aligned} \sum \limits ^{n\ne 0,1}_{n\in {\mathbb {Z}}}|I_{3,n}|\lesssim & {} \sum \limits ^{n\ne 0,1}_{n\in {\mathbb {Z}}}\frac{1}{|n|\sqrt{|x'-y'|^2+|x_3-y_3|^2+n^2}}\nonumber \\\lesssim & {} \int ^\infty _1 \frac{1}{s\sqrt{|x'-y'|^2+|x_3-y_3|^2+s^2}}ds\nonumber \\\lesssim & {} \frac{1}{\sqrt{|x'-y'|^2+|x_3-y_3|^2}}. \end{aligned}$$
(A.18)

Then (A.16) and (A.18) together indicates the first part of (A.14).

Case 2: \(\varvec{|x'-y'|>1}\)

Since in this situation, we need to get one more order decay with respect to \(|x'-y'|\), we need to compute the sum more carefully:

$$\begin{aligned} G(x,y)= & {} \frac{1}{4\pi }\sum \limits ^{+\infty }_{n=-\infty }\bigg \{\frac{1}{k_{n,-,+}} -\frac{1}{k_{n,+,-}}\bigg \}\\= & {} \frac{1}{4\pi }\underbrace{\bigg \{\frac{1}{k_{0,-,+}}-\frac{1}{k_{0,+,-}} +\frac{1}{k_{1,-,+}}-\frac{1}{k_{1,+,-}}+\frac{1}{k_{-1,-,+}}-\frac{1}{k_{-1,+,-}} \bigg \}}_{J_1}\\&+\frac{1}{4\pi }\sum \limits _{n\geqq 2}\underbrace{\bigg \{\frac{1}{k_{n,-,+}}-\frac{1}{k_{n,+,-}} +\frac{1}{k_{n,-,-}}-\frac{1}{k_{n,+,+}}\bigg \}}_{J_{2,n}}. \end{aligned}$$

Now we will compute Js term by term. For \(J_1\),

$$\begin{aligned} \Big |\frac{1}{k_{0,-,+}}-\frac{1}{k_{0,+,-}}\Big |= & {} \frac{|k^2_{0,-,+}-k^2_{0,+,-}|}{{k_{0,-,+}}{k_{0,+,-}}({k_{0,-,+}}+{k_{0,+,-}})}\nonumber \\= & {} \frac{|4x_3y_3|}{{k_{0,-,+}}{k_{0,+,-}}({k_{0,-,+}}+{k_{0,+,-}})}\nonumber \\\lesssim & {} \frac{1}{|x'-y'|^3}. \end{aligned}$$
(A.19)

By the same techniques, we can prove that

$$\begin{aligned} \Big |\frac{1}{k_{1,-,+}}-\frac{1}{k_{1,+,-}}\Big |+\Big | \frac{1}{k_{-1,-,+}}-\frac{1}{k_{-1,+,-}}\Big |\lesssim \frac{1}{|x'-y'|^3}. \end{aligned}$$
(A.20)

We see that when \(|x'-y'|>1\) and \(n\geqq 2\),

$$\begin{aligned} k_{n,\alpha ,\beta }\approx |x'-y'|+n. \quad \alpha ,\beta \in \{+,-\}. \end{aligned}$$
(A.21)

Then

$$\begin{aligned} J_{2,n}= & {} \frac{k^2_{n,+,-}-k^2_{n,-,+}}{{k_{n,-,+}}{k_{n,+,-}}({k_{n,-,+}} +{k_{n,+,-}})}+\frac{k^2_{n,+,+}-k^2_{n,-,-}}{{k_{n,-,-}}{k_{n,+,+}}({k_{n,-,-}} +{k_{n,+,+}})}\\= & {} \frac{4x_3(y_3-2n)}{{k_{n,-,+}}{k_{n,+,-}}({k_{n,-,+}}+{k_{n,+,-}})} +\frac{4x_3(y_3+2n)}{{k_{n,-,-}}{k_{n,+,+}}({k_{n,-,-}}+{k_{n,+,+}})}\\= & {} 4x_3y_3\underbrace{\bigg [\frac{1}{k_{n,-,+}k_{n,+,-}(k_{n,-,+}+k_{n,+,-})} +\frac{1}{k_{n,-,-}k_{n,+,+}(k_{n,-,-}+k_{n,+,+})}\bigg ]}_{K_{n,1}}\\&-8x_3n\underbrace{\bigg [\frac{1}{k_{n,-,+}k_{n,+,-}(k_{n,-,+}+k_{n,+,-})} -\frac{1}{k_{n,-,-}k_{n,+,+}(k_{n,-,-}+k_{n,+,+})}\bigg ]}_{K_{n,2}}. \end{aligned}$$

Thus, we have

$$\begin{aligned} |J_{2,n}|\lesssim |K_{n,1}|+n|K_{n,2}|. \end{aligned}$$

Next we will show that

$$\begin{aligned} \sum \limits ^\infty _{n=2} |J_{2,n}|\lesssim & {} \sum \limits ^\infty _{n=2} |K_{n,1}|+ \sum \limits ^\infty _{n=2}n|K_{n,2}|\nonumber \\\lesssim & {} \frac{1}{|x'-y'|^2}. \end{aligned}$$
(A.22)

Then (A.19), (A.20) and (A.22) together indicate the second part of (A.14).

Using (A.21),

$$\begin{aligned} \sum \limits ^\infty _{n=2} |K_{n,1}|\lesssim & {} \sum \limits ^\infty _{n=2} \frac{1}{(|x'-y'|+n)^3}\nonumber \\\lesssim & {} \int ^\infty _0\frac{1}{(|x'-y'|+s)^3}ds\lesssim \frac{1}{|x'-y'|^2}. \end{aligned}$$

The hardest part is to estimate \(K_{n,2}\) since the sum has one more increasing term n before \(K_{n,2}\). When we estimate \(K_{n,2}\), we need one more \(\frac{1}{n}\) coming out compared with \(K_{n,1}\).

Denote

$$\begin{aligned} K_{n,2,1}\equiv & {} {k_{n,-,+}\, \cdot k_{n,+,-} \cdot (k_{n,-,+}+k_{n,+,-})}\approx (|x'-y'|+n)^3,\\ K_{n,2,2}\equiv & {} {k_{n,-,-} \, \cdot k_{n,+,+} \cdot (k_{n,-,-}+k_{n,+,+})}\approx (|x'-y'|+n)^3. \end{aligned}$$

Therefore,

$$\begin{aligned} |K_{n,2}|= & {} \Big |\frac{1}{K_{n,2,1}}-\frac{1}{K_{n,2,2}}\Big |\nonumber \\= & {} \frac{|K^2_{n,2,2}-K^2_{n,2,1}|}{K_{n,2,1}K_{n,2,2}(K_{n,2,1}+K_{n,2,2})}\nonumber \\\approx & {} \frac{|K^2_{n,2,2}-K^2_{n,2,1}|}{(|x'-y'|+n)^9}. \end{aligned}$$
(A.23)

By a direct computation, we can see that

$$\begin{aligned} |K^2_{n,2,2}-K^2_{n,2,1}|\lesssim |x'-y'|^4n+|x'-y'|^2n^3+n^5. \end{aligned}$$
(A.24)

Inserting (A.24) into (A.23), we can get

$$\begin{aligned} \sum \limits ^\infty _{n=2} n|K_{n,2}|\lesssim & {} \sum \limits ^\infty _{n=2} \frac{|x'-y'|^4n^2+|x'-y'|^2n^4+n^6}{(|x'-y'|+n)^9}\nonumber \\\lesssim & {} \int ^\infty _0\frac{|x'-y'|^4s^2+|x'-y'|^2s^4+s^6}{(|x'-y'|+s)^9}ds\nonumber \\\lesssim & {} \frac{1}{|x'-y'|^2}. \end{aligned}$$
(A.25)

Combining the above, we have proved the estimate in (A.14) for G(xy). The estimate of \(\partial _{x',y'}G(x,y)\) will be essentially the same as G(xy), since one \(\frac{1}{|x-y|}\) will come out when we differentiate G(xy) on \(x',y'\), so we omit the details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, B., Pan, X., Zhang, Q.S. et al. Decay and Vanishing of some D-Solutions of the Navier–Stokes Equations. Arch Rational Mech Anal 237, 1383–1419 (2020). https://doi.org/10.1007/s00205-020-01533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01533-3

Navigation