Skip to main content
Log in

An Efficient Randomized Fixed-Precision Algorithm for Tensor Singular Value Decomposition

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition. This paper proposes a new randomized fixed-precision algorithm which for a given third-order tensor and a prescribed approximation error bound, it automatically finds the tubal rank and corresponding low tubal rank approximation. The algorithm is based on the random projection technique and equipped with the power iteration method for achieving better accuracy. We conduct simulations on synthetic and real-world datasets to show the efficiency and performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It is also known as the tensor chain decomposition.

  2. Such randomized algorithms are called randomized fixed-rank algorithms.

  3. In matlab the command "cat" can be used for the concatenation operation.

  4. The matlab implementation of this multiplication and related tubal operations are provided in the toolbox https://github.com/canyilu/Tensor-tensor-product-toolbox.

References

  1. Ahmadi-Asl, S., Caiafa, C.F., Cichocki, A., Phan, A.H., Tanaka, T., Oseledets, I., Wang, J.: Cross tensor approximation methods for compression and dimensionality reduction. IEEE Access 9, 150809–150838 (2021)

    Google Scholar 

  2. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433(7), 1241–1253 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Che, M., Wang, X., Wei, Y., Zhao, X.: Fast randomized tensor singular value thresholding for low-rank tensor optimization. Numer. Linear Algebra Appl. 29, e2444 (2022)

    MathSciNet  MATH  Google Scholar 

  4. Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q., Mandic, D.P.: Tensor networks for dimensionality reduction and large-scale optimization: part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4/5), 249–429 (2016)

    MATH  Google Scholar 

  5. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    Google Scholar 

  6. Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Mandic, D.P.: Tensor networks for dimensionality reduction and large-scale optimization: part 2 applications and future perspectives. Found. Trends Mach. Learn. 9(6), 431–673 (2017)

    MATH  Google Scholar 

  7. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Cambridge (2010)

    Google Scholar 

  8. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms—part I: lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30(3), 1022–1032 (2008)

    MathSciNet  MATH  Google Scholar 

  9. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms—part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)

    MathSciNet  MATH  Google Scholar 

  10. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    MathSciNet  MATH  Google Scholar 

  11. De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms—part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30(3), 1067–1083 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Ding, M., Xie, P.: A randomized singular value decomposition for third-order oriented tensors. arXiv: 2203.02761 (2022)

  13. Espig, M., Naraparaju, K.K., Schneider, J.: A note on tensor chain approximation. Comput. Vis. Sci. 15(6), 331–344 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Gleich, D.F., Greif, C., Varah, J.M.: The power and Arnoldi methods in an algebra of circulants. Numer. Linear Algebra Appl. 20(5), 809–831 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1/2/3/4), 164–189 (1927)

    MATH  Google Scholar 

  17. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7(1/2/3/4), 39–79 (1928)

    MATH  Google Scholar 

  18. Jiang, T.-X., Ng, M.K., Zhao, X.-L., Huang, T.-Z.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Leardi, R.: Multi-way Analysis with Applications in the Chemical Sciences, Age Smilde, Rasmus Bro and Paul Geladi, Wiley, Chichester, 2004, ISBN 0-471-98691-7, 381 pp. J. Chemomet. 19(2), 119–120 (2005)

    Google Scholar 

  24. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2019)

    Google Scholar 

  25. Lund, K.: A new block Krylov subspace framework with applications to functions of matrices acting on multiple vectors, PhD Thesis, Temple University, Philadelphia, PA (2018)

  26. Lund, K.: The tensor t-function: a definition for functions of third-order tensors. Numer. Linear Algebra Appl. 27(3), 1–17 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Martinsson, P.-G., Voronin, S.: A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices. SIAM J. Sci. Comput. 38(5), S485–S507 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590, 258–303 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Miao, Y., Qi, L., Wei, Y.: T-Jordan canonical form and T-drazin inverse based on the T-product. Commun. Appl. Math. Comput. 3, 201–220 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-100), Report CUCS-006-96 (1996). https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

  32. Newman, E.: A step in the right dimension: tensor algebra and applications, PhD Thesis, Tufts University, Medford (2019)

  33. Newman, E., Horesh, L., Avron, H., Kilmer, M.: Stable tensor neural networks for rapid deep learning. arXiv: 1811.06569 (2018)

  34. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Phan, A.H., Cichocki, A.: Tensor decompositions for feature extraction and classification of high dimensional datasets. Nonlinear Theory and Its Applications, IEICE 1(1), 37–68 (2010)

    Google Scholar 

  36. Qi, L., Yu, G.: T-singular values and t-sketching for third order tensors. arXiv: 2103.00976 (2021)

  37. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Soltani, S., Kilmer, M.E., Hansen, P.C.: A tensor-based dictionary learning approach to tomographic image reconstruction. BIT Numer. Math. 56(4), 1425–1454 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Tarzanagh, D.A., Michailidis, G.: Fast randomized algorithms for t-product based tensor operations and decompositions with applications to imaging data. SIAM J. Imaging Sci. 11(4), 2629–2664 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Practical sketching algorithms for low-rank matrix approximation. SIAM J. Matrix Anal. Appl. 38(4), 1454–1485 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. Probl. Meas. Change 15, 122–137 (1963)

    Google Scholar 

  43. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    MathSciNet  Google Scholar 

  44. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Frederiksen, N., Gulliksen, H. (eds) Contributions to Mathematical Psychology, pp. 109–127. Holt, Rinehart and Winston, New York (1964)

    Google Scholar 

  45. Ugwu, U. O.: Viterative tensor factorization based on Krylov subspace-type methods with applications to image processing, PhD Thesis, Kent State University, Kent (2021)

  46. Ugwu, U. O., Reichel L.: Tensor regularization by truncated iteration: a comparison of some solution methods for large-scale linear discrete ill-posed problem with a t-product. arXiv: 2110.02485 (2021)

  47. Yu, W., Gu, Y., Li, Y.: Efficient randomized algorithms for the fixed-precision low-rank matrix approximation. SIAM J. Matrix Anal. Appl. 39(3), 1339–1359 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, J., Saibaba, A.K., Kilmer, M.E., Aeron, S.: A randomized tensor singular value decomposition based on the t-product. Numer. Linear Algebra Appl. 25(5), e2179 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, Z., Aeron, S.: Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65(6), 1511–1526 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849. IEEE (2014)

  51. Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition. arXiv: 1606.05535 (2016)

Download references

Acknowledgements

After acceptance of the paper, the author found similar incremental algorithms for computation of the t-SVD in [45, 46]. Thanks Dr. Ugochukwu Ugwu for bringing these works to the author’s attention. The author would like to thank Stanislav Abukhovich for his help in the implementation of the algorithms. He introduced the author the matlab function cat to perform the tensor concatenation operation. He also pointed out constructive comments on the proof of Theorem 3. The author is also indebted to three anonymous reviewers for their constructive and useful comments which have greatly improved the quality of the paper. The author was partially supported by the Ministry of Education and Science of the Russian Federation (Grant 075.10.2021.068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ahmadi-Asl.

Ethics declarations

Conflicts of Interests

The author declares that he has no conflict of interest with anything.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Asl, S. An Efficient Randomized Fixed-Precision Algorithm for Tensor Singular Value Decomposition. Commun. Appl. Math. Comput. 5, 1564–1583 (2023). https://doi.org/10.1007/s42967-022-00218-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00218-w

Keywords

Mathematics Subject Classification

Navigation