Skip to main content
Log in

Radon Measure Solutions to Riemann Problems for Isentropic Compressible Euler Equations of Polytropic Gases

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures, and the solutions admit the concentration of mass. It is found that under the requirement of satisfying the over-compressing entropy condition:  (i)  there is a unique delta shock solution, corresponding to the case that has two strong classical Lax shocks; (ii) for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave, or two shocks with one being weak, there are infinitely many solutions, each consists of a delta shock and a rarefaction wave; (iii) there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves. These solutions are self-similar. Furthermore, for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data, there always exists a unique delta shock for at least a short time. It could be prolonged to a global solution. Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass (particle). Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified. This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases, that is strictly hyperbolic, and whose characteristics are both genuinely nonlinear. We also discuss possible physical interpretations and applications of these new solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, J.D.: Hypersonic and High Temperature Gas Dynamics. AIAA Education Series, 2nd edn. McGraw-Hill (2006)

    Book  Google Scholar 

  2. Bouchut, F.: On zero pressure gas dynamics. In: Perthame, B. (ed) Advances in Kinetic Theory and Computing. Ser. Adv. Math. Appl. Sci., vol. 22, pp. 171–190. World Sci. Publ., River Edge, NJ (1994)

  3. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32(7), 891–933 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenier, Y.: Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7(suppl.3), S326–S331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan, A.: Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. Oxford Lecture Series in Mathematics and Its Applications, vol. 20. Oxford University Press, Oxford (2000)

    Google Scholar 

  6. Bressan, A.: Open questions in the theory of one dimensional hyperbolic conservation laws. In: Nonlinear Conservation Laws and Applications, IMA Vol. Math. Appl., vol. 153, pp. 1–22. Springer, New York (2011)

    Google Scholar 

  7. Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, 41. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1989)

  8. Chang, T., Tan, D.: Two-dimensional Riemann problem for a hyperbolic system of conservation laws. Acta Math. Sci. (English Ed.) 11(4), 369–392 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.-Q., Liu, H.: Formation of \(\delta \)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34(4), 925–938 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, S., Li, J., Zhang, T.: Explicit construction of measure solutions of Cauchy problem for transportation equations. Sci. China Ser. A 40(12), 1287–1299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombeau, J.F.: Multiplication of Distributions: A tool in Mathematics, Numerical Engineering and Theoretical Physics. Lecture Notes in Mathematics, vol. 1532. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  12. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 3rd edn. Springer-Verlag, Berlin (2010)

    Google Scholar 

  13. Daw, D., Nedeljkov, M.: Shadow waves for pressureless gas balance laws. Appl. Math. Lett. 57, 54–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. E, W., Rykov, Y.G., Sinai, Y.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177(2), 349–380 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, L., Qu, A., Yuan, H.: Delta shock as free piston in pressureless Euler flows. Preprint (2021)

  16. Guerra, G., Shen, W.: Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux. SIAM J. Math. Anal. 51(4), 3112–3144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, L., Sheng, W., Zhang, T.: The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal. 9(2), 431–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws. In: Antman, S.S., Marsden, J.E., Sirovich, L. (eds) Applied Mathematical Sciences, vol. 152, 2nd edn. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  19. Hu, D.: The supersonic flow past a wedge with large curved boundary. J. Math. Anal. Appl. 462(1), 380–389 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, F., Wang, Z.: Well posedness for pressureless flow. Commun. Math. Phys. 222(1), 117–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, W., Li, T., Wang, Z., Fang, S.: The limiting behavior of the Riemann solutions of non-isentropic modified Chaplygin gas dynamics. J. Math. Phys. 62(4), 041501 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, Y., Qu, A., Yuan, H.: On two-dimensional steady hypersonic-limit Euler flows passing ramps and Radon measure solutions of compressible Euler equations. Commun. Math. Sci., to apear (2019). arXiv:1909.03624v1

  23. Jin, Y., Qu, A., Yuan, H.: Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Commun. Pure Appl. Anal. 20(7/8), 2665–2685 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keyfitz, B.L.: Conservation laws, delta-shocks and singular shocks. In: Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math., vol. 401. pp. 99–111, Chapman & Hall/CRC, Boca Raton, FL (1999)

  25. Korchinski, D.J.: Solution of a Riemann Problem for a 2 \(\times \) 2 System of Conservation Laws Possessing no Classical Weak Solution. Thesis (Ph.D.). Adelphi University. ProQuest LLC, Ann Arbor, MI (1977)

  26. LeFloch, P.G.: An existence and uniqueness result for two nonstrictly hyperbolic systems. In: Nonlinear Evolution Equations that Change Type. IMA Vol. Math. Appl. vol. 27, pp. 126–138. Springer, New York (1990)

  27. LeFloch, P.G., Thanh, M.D.: The Riemann problem for the shallow water equations with discontinuous topography. Commun. Math. Sci. 5(4), 865–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J.: Note on the compressible Euler equations with zero temperature. Appl. Math. Lett. 14(4), 519–523 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, J., Warnecke, G.: Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics. Adv. Differ. Equ. 8(8), 961–1004 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Li, J., Zhang, T., Yang, S.: The Two-Dimensional Riemann Problem in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 98. Longman, Harlow (1998)

    Google Scholar 

  31. Nedeljkov, M.: Unbounded solutions to some systems of conservation laws—split delta shock waves. In: Proceedings of the 5th International Symposium on Mathematical Analysis and Its Applications (Niška Banja, 2002) Mat. Vesnik 54(3/4), 145–149 (2002)

  32. Nedeljkov, M.: Delta and singular delta locus for one-dimensional systems of conservation laws. Math. Methods Appl. Sci. 27(8), 931–955 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nedeljkov, M., Oberguggenberger, M.: Interactions of delta shock waves in a strictly hyperbolic system of conservation laws. J. Math. Anal. Appl. 344(2), 1143–1157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Neumann, L., Oberguggenberger, M., Sahoo, M. R., Sen, A.: Initial-boundary value problem for 1D pressureless gas dynamics (2021). https://arxiv.org/abs/2104.10537v1

  35. Paiva, A.: Formation of \(\delta \)-shock waves in isentropic fluids. Z. Angew. Math. Phys. 71(4), 110, 12 (2020)

  36. Qu, A., Yuan, H.: Measure solutions of one-dimensional piston problem for compressible Euler equations of Chaplygin gas. J. Math. Anal. Appl. 481(1), 123486 (2020). (10)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qu, A., Yuan, H.: Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton’s sine-squared law. J. Differ. Equ. 269(1), 495–522 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qu, A., Yuan, H., Zhao, Q.: High Mach number limit of one-dimensional piston problem for non-isentropic compressible Euler equations: polytropic gas. J. Math. Phys. 61(1), 011507 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qu, A., Yuan, H., Zhao, Q.: Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge. ZAMM Z. Angew. Math. Mech. 100(3), e201800225 (2020)

    Article  MathSciNet  Google Scholar 

  40. Riemann, B.: The propagation of planar air waves of finite amplitude. Abh. Ges. Wiss. Göttingen 8, 43–65 (1860)

    Google Scholar 

  41. Schwartz, L.: Théorie des distributions. (French) Nouvelle édition, entiérement corrigée, refondue et augmentée. Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X Hermann, Paris (1966)

  42. Shen, C., Sun, M., Wang, Z.: Global structure of Riemann solutions to a system of two-dimensional hyperbolic conservation laws. Nonlinear Anal. Theory Methods Appl. 74(14), 4754–4770 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sheng, W., Zhang, T.: The Riemann problem for the transportation equations in gas dynamics. Mem. Am. Math. Soc. 137(654), viii+77 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  45. Tan, D., Zhang, T.: Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws. I. Four-\({J}\) cases. J. Differ. Equ. 111(2), 203–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tan, D., Zhang, T., Zheng, Y.: Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differ. Equ. 112(1), 1–32 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, Z., Huang, F., Ding, X.: On the Cauchy problem of transportation equations. Acta Math. Appl. Sinica (English Ser.) 13(2), 113–122 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, H., Zhang, Y.: New developments of delta shock waves and its applications in systems of conservation laws. J. Differ. Equ. 252(11), 5951–5993 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants No. 11871218, No. 12071298, and by the Science and Technology Commission of Shanghai Municipality under Grant No. 18dz2271000. The authors were grateful to Professor Jiequan Li for his valuable comments on a draft of this paper, and particularly the observation on connections between delta shocks and free pistons, in a private conversation. Aifang Qu appreciated very much the support and the hospitality of the IMS, during her visit at the Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Yuan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Appendix A Wave Curves and Classical Riemann Solutions of Riemann Problems

Appendix A Wave Curves and Classical Riemann Solutions of Riemann Problems

In this appendix, we recall some fundamental results on wave curves and entropy weak solutions to Riemann problems for system (1), with the initial conditions

$$\begin{aligned} (u, \rho )|_{t=0}=\left\{ \begin{aligned} (u_1, \rho _1),&\quad \text {if}~x<0, \\ (u_2, \rho _2),&\quad \text {if}~x>0. \\ \end{aligned} \right. \end{aligned}$$
(A1)

The complete analysis and results could be found in [7, Chapter 2]. It is well known that (1) has two real eigenvalues

$$\begin{aligned} \lambda _{1}=u-c, \ \ \ \lambda _{2}=u+c, \end{aligned}$$
(A2)

when \(\rho >0,\) where \(c=( p'(\rho ))^{\frac{1}{2}}.\) So it is strictly hyperbolic for polytropic gases without vacuum. The associated right eigenvectors are

$$\begin{aligned} \mathbf{r }_{1}=\begin{pmatrix}-\rho ,&c\end{pmatrix}^{\top }, \mathbf{r }_{2}=\begin{pmatrix}\rho ,&c \end{pmatrix}^{\top }. \end{aligned}$$

Moreover, \(\nabla _{(u,\rho )}\lambda _{i}\cdot \mathbf{r }_{i}\ne 0\) if \(p''(\rho )>0, i=1, 2.\) Hence, both the characteristics are genuinely nonlinear for non-vacuum polytropic gases with \(\gamma >1\).

For the shock wave curves in the \((u,\rho )\)-plane, with \(\sigma \) being the speed of shocks, considering the Rankine-Hugoniot conditions

$$\begin{aligned} \sigma [\rho ]=[\rho u],\qquad \sigma [\rho u]=[\rho u^{2}+p(\rho )], \end{aligned}$$
(A3)

which yield

$$\begin{aligned} u-u_{1}=\pm \sqrt{\frac{(\rho -\rho _{1})(p-p_{1})}{\rho \rho _{1}}}. \end{aligned}$$
(A4)

According to the Lax condition, or equivalently, density increases across shock front [44, Section 18.B, p.349], for 1-shocks, we have \(\rho >\rho _{1}.\) Since \(\sigma <0,\) the first equation in (A3) implies that \(u<u_{1}.\) Thus,

$$\begin{aligned} S_{1}\doteq \left\{ (u,\rho )~\bigg{|}~ u-u_{1}=-\sqrt{\frac{(\rho -\rho _{1})(p-p_{1})}{\rho \rho _{1}}}, \ \ \ \rho >\rho _{1}\right\} . \end{aligned}$$
(A5)

Similar analysis shows that

$$\begin{aligned} S_{2}\doteq \left\{ (u,\rho )~\bigg{|}~ u-u_{1}=-\sqrt{\frac{(\rho -\rho _{1})(p-p_{1})}{\rho \rho _{1}}}, \ \ \ \rho <\rho _{1}\right\} . \end{aligned}$$
(A6)
Fig. A1
figure 6

Wave curves of Riemann problem (1), (A1) in the \((u,\rho )\)-plane

For the rarefaction wave curves, set \(\xi \doteq \frac{x}{t}.\) Then system (1) is reduced to the ordinary differential equations

$$\begin{aligned} \left\{ \begin{aligned}&(u-\xi )\rho _{\xi }+\rho u_{\xi }=0,\\&p'(\rho )\rho _{\xi }+\rho (u-\xi )u_{\xi }=0,\\ \end{aligned} \right. \end{aligned}$$
(A7)

which implies that

$$\begin{aligned} \xi =\lambda _{1}=u-c \quad \text {or} \quad \xi =\lambda _{2}=u+c. \end{aligned}$$
(A8)

For 1-waves, from the first equation in (A7), we have

$$\begin{aligned} \frac{\mathrm {d} u}{\mathrm {d} \rho }=-\frac{c}{\rho }<0. \end{aligned}$$
(A9)

Integrating both sides of (A9) gives

$$\begin{aligned} R_{1}\doteq \left\{ (u,\rho )~|~ u-u_{1}=-\int _{\rho _{1}}^{\rho }\frac{\sqrt{p'(s)}}{s}\mathrm {d} s, \ \ \ \rho <\rho _{1}\right\} . \end{aligned}$$
(A10)

Similarly, the 2-rarefaction wave curve is

$$\begin{aligned} R_{2}\doteq \left\{ (u,\rho )~|~ u-u_{1}=\int _{\rho _{1}}^{\rho }\frac{\sqrt{p'(s)}}{s}\mathrm {d} s, \ \ \ \rho >\rho _{1}\right\} . \end{aligned}$$
(A11)

For the Riemann problem (1), (A1) with given left state \((u_{1}, \rho _{1})\), if the right state \((u_{2}, \rho _{2})\) lies on any of the above four curves, then \((u_{1}, \rho _{1})\) and \((u_{2}, \rho _{2})\) can be connected by a single shock wave or rarefaction wave as indicated by the name of the wave curves above. If \((u_{2}, \rho _{2})\) lies in one of the four open regions \(\mathrm {I},\ \mathrm {II},\ \mathrm {III},\) or \(\mathrm {IV}\) as depicted in Fig. A1, then the solution contains two waves. To be more specific, it is \(R_1+R_2\) (two rarefaction waves) if \((u_2,\rho _2)\in \mathrm {I}\); \(R_1+S_2\) (a rarefaction wave followed by a shock) if \((u_2,\rho _2)\in \mathrm {II}\); \(S_1+R_2\) (a shock followed by a rarefaction wave) if \((u_2,\rho _2)\in \mathrm {III}\); and \(S_1+S_2\) (two shocks) if \((u_2,\rho _2)\in \mathrm {IV}\). States in region \(\mathrm {V}\) can only be connected to \((u_1,\rho _1)\) by a vacuum lying in the middle of 1- and 2-rarefaction waves.

In Sect. 4.1, for the proof of Theorem 1, we utilized the inverse rarefaction wave curves. \(R_1^{*}(U_1)\) is exactly the curve given by

$$\begin{aligned} \left\{ (u,\rho )~|~u-u_{1}=-\int _{\rho _{1}}^{\rho }\frac{\sqrt{p'(s)}}{s}\mathrm {d} s, \ \ \ \rho >\rho _{1}\right\} , \end{aligned}$$
(A12)

which consists of left state U that could be connected to the right state \(U_1\) by a 1-rarefaction wave. Similarly, U on the curve

$$\begin{aligned} R_2^{*}(U_1)\doteq \left\{ (u,\rho )~|~ u-u_{1}=\int _{\rho _{1}}^{\rho }\frac{\sqrt{p'(s)}}{s}\mathrm {d} s, \ \ \ \rho <\rho _{1}\right\} \end{aligned}$$
(A13)

could be connected from right by a 2-rarefaction wave to the right state \(U_1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Qu, A. & Yuan, H. Radon Measure Solutions to Riemann Problems for Isentropic Compressible Euler Equations of Polytropic Gases. Commun. Appl. Math. Comput. 5, 1097–1129 (2023). https://doi.org/10.1007/s42967-022-00187-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00187-0

Keywords

Mathematics Subject Classification

Navigation