Structure Preservation Properties
The first goal of this subsection is to collect and define the properties of the compressible Euler equations we want to preserve with our discretization. For the definition of two-point fluxes, it suffices to concentrate on semi-discrete finite volume methods of the form
$$\begin{aligned} \partial _t u_i + \frac{1}{{\Delta } x} \left( \underbrace{f^{{\mathrm {num}}}(u_{i+1}, u_{i})}_{= f^{{\mathrm {num}}}_+} - \underbrace{f^{{\mathrm {num}}}(u_{i}, u_{i-1})}_{= f^{{\mathrm {num}}}_-} \right) = 0. \end{aligned}$$
(6)
In what follows, we drop the subscript \(+\) for the numerical flux function for convenience and assume an interface at location i and \(i+1\) if not stated otherwise.
Definition 1
(Entropy-conservation [50, 51]) A numerical flux \(f^{{\mathrm {num}}}\) and the corresponding finite volume method is EC if
$$\begin{aligned}{}[\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!] = 0, \end{aligned}$$
(7)
where \(w = U'\) are the entropy variables, \(\psi \) is the flux potential, and \([\![w]\!] := w_{i+1} - w_i\) denotes the jump operator.
Unless stated otherwise, we will use the entropy
$$\begin{aligned} U = \frac{- \rho \,s}{\gamma - 1}, \quad s = \log \frac{p}{\rho ^\gamma } \end{aligned}$$
(8)
of the compressible Euler equation (2), with associated entropy variables
$$\begin{aligned} w = \left( \frac{\gamma }{\gamma - 1} - \frac{\log ({p}/{\rho ^\gamma })}{\gamma - 1} - \frac{\rho v^2}{2 p}, \frac{\rho v}{p}, - \frac{\rho }{p} \right) , \end{aligned}$$
(9)
and flux potential \(\psi = \rho v\).
Definition 2
(Kinetic energy preservation [22, 26, 33, 34]) A numerical flux \(f^{{\mathrm {num}}}= (f^{{\mathrm {num}}}_\rho , f^{{\mathrm {num}}}_{\rho v}, f^{{\mathrm {num}}}_{\rho e})\) and the corresponding finite volume method is KEP if
$$\begin{aligned} f^{{\mathrm {num}}}_{\rho v} = \{\!\{v\}\!\} f^{{\mathrm {num}}}_{\rho } + \{\!\{p\}\!\}, \end{aligned}$$
(10)
where \( \{\!\{p\}\!\}:= (p_i + p_{i+1})/2\) denotes the arithmetic mean.
Definition 3
(Pressure equilibrium preservation) A numerical flux \(f^{{\mathrm {num}}}= (f^{{\mathrm {num}}}_\rho , f^{{\mathrm {num}}}_{\rho v}, f^{{\mathrm {num}}}_{\rho e})\) and the corresponding finite volume method is PEP if
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho v}&= v f^{{\mathrm {num}}}_{\rho } + {\mathrm {const}}(p, v), \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} v^2 f^{{\mathrm {num}}}_\rho + {\mathrm {const}}(p, v), \end{aligned} \end{aligned} \right.$$
(11)
whenever the velocity v and the pressure p are constant throughout the domain.
We motivate our definition of PEP fluxes with the following
Lemma 1
Pressure equilibrium, i.e., \(p \equiv {\mathrm {const}}\), \(v \equiv {\mathrm {const}}\), is preserved by (6) if and only if \(f^{{\mathrm {num}}}\) is PEP.
Proof
The semidiscrete evolution equation for the velocity is
$$\begin{aligned} \rho \partial _t v = \partial _t \rho v - v \partial _t \rho = - \frac{1}{{\Delta } x} \left( f^{{\mathrm {num}}}_{\rho v, +} - f^{{\mathrm {num}}}_{\rho v, -} - v \left( f^{{\mathrm {num}}}_{\rho , +} - f^{{\mathrm {num}}}_{\rho , -} \right) \right) . \end{aligned}$$
(12)
Similarly, for \(\partial _t v = 0\), the pressure evolves according to
$$\begin{aligned} \frac{1}{\gamma - 1} \partial _t p = \partial _t \rho \varepsilon = \partial _t \rho e - \frac{1}{2} v^2 \partial _t \rho = - \frac{1}{{\Delta } x} \left( f^{{\mathrm {num}}}_{\rho e, +} - f^{{\mathrm {num}}}_{\rho e, -} - \frac{1}{2} v^2 \left( f^{{\mathrm {num}}}_{\rho , +} - f^{{\mathrm {num}}}_{\rho , -} \right) \right) . \end{aligned}$$
(13)
Thus, \(\partial _t v = 0\) and \(\partial _t p = 0\) if and only if (11) is satisfied.
We are ready to formulate the central theorem of this work and to give the answer to the first research question (RQ1) in the following
Theorem 1
The numerical flux of Ranocha [33, 34],
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\}, \\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\}^2 + \{\!\{p\}\!\}, \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} (\!(v \cdot v)\!) + \frac{1}{\gamma - 1} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}^{-1} \{\!\{v\}\!\} + (\!(p \cdot v)\!), \end{aligned} \end{aligned} \right.$$
(14)
with logarithmic mean
$$\begin{aligned} \{\!\{\rho \}\!\}_{{\mathrm {log}}} := \frac{[\![\rho ]\!]}{[\![\log \rho ]\!]}, \end{aligned}$$
(15)
and product mean
$$\begin{aligned} (\!(a \cdot b)\!) := \frac{a_+ b_- + a_- b_+}{2} = 2 \{\!\{a\}\!\} \{\!\{b\}\!\} - \{\!\{a b\}\!\}, \end{aligned}$$
(16)
for the compressible Euler equation (2) is EC, KEP, PEP, and has a density flux \(f^{{\mathrm {num}}}_{\rho }\) that does not depend on the pressure. Moreover, it is the only numerical flux with these properties for \(v \equiv {\mathrm {const}}\).
Remark 1
The motivation for the last property, i.e., that the density flux does not depend on pressure such as, e.g., in the EC flux by Ismail and Roe [21], is due to the discussion presented in [8, 32], where positivity failure could be identified for certain setups with large pressure jumps and constant densities.
Remark 2
The numerical flux (14) can also be derived by reversing the role of energy and entropy in the compressible Euler equations [32, Section 5]. Indeed, the flux (66) of [32] is the same as (14) developed in [33, Theorem 7.8]. This numerical flux is essentially uniquely defined by its properties, cf. Remark 4.
Proof of Theorem 1
We first investigate the necessary conditions for EC and PEP and get the following
Lemma 2
For \(p \equiv {\mathrm {const}}\), \(v \equiv {\mathrm {const}}\), an EC numerical flux that is also KEP or PEP satisfies
$$\begin{aligned} f^{{\mathrm {num}}}_{\rho e} = \frac{1}{2} v^2 f^{{\mathrm {num}}}_{\rho } + \frac{\gamma }{\gamma - 1} \frac{p}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} f^{{\mathrm {num}}}_{\rho }. \end{aligned}$$
(17)
Proof
For \(p \equiv {\mathrm {const}}\), \(v \equiv {\mathrm {const}}\), the left-hand side of (7) reduces to
$$\begin{aligned}{}[\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!] = \left( \frac{\gamma }{\gamma - 1} [\![\log \rho ]\!] - \frac{v^2}{2 p} [\![\rho ]\!] \right) f^{{\mathrm {num}}}_{\rho } + \frac{v}{p} [\![\rho ]\!] f^{{\mathrm {num}}}_{\rho v} - \frac{1}{p} [\![\rho ]\!] f^{{\mathrm {num}}}_{\rho e} - v [\![\rho ]\!]. \end{aligned}$$
(18)
Inserting \(f^{{\mathrm {num}}}_{\rho v} = v f^{{\mathrm {num}}}_{\rho } + p\) from the KEP (10) or PEP (11) property and using the discrete chain rule
$$\begin{aligned}{}[\![\log \rho ]\!] = \frac{[\![\rho ]\!]}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} \end{aligned}$$
(19)
results in
$$\begin{aligned}&\left( \frac{\gamma }{\gamma - 1} \frac{[\![\rho ]\!]}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} - \frac{v^2}{2 p} [\![\rho ]\!] \right) f^{{\mathrm {num}}}_{\rho } + \frac{v^2}{p} [\![\rho ]\!] f^{{\mathrm {num}}}_{\rho } + v [\![\rho ]\!] - \frac{1}{p} [\![\rho ]\!] f^{{\mathrm {num}}}_{\rho e} - v [\![\rho ]\!] \nonumber \\&\quad = \frac{\gamma }{\gamma - 1} \frac{[\![\rho ]\!]}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} f^{{\mathrm {num}}}_{\rho } + \frac{v^2}{2 p} [\![\rho ]\!] f^{{\mathrm {num}}}_{\rho } - \frac{1}{p} [\![\rho ]\!] f^{{\mathrm {num}}}_{\rho e}. \end{aligned}$$
(20)
This expression has to vanish for arbitrary values of \(\rho _\pm \) for an EC flux, resulting in (17).
Lemma 3
For \(p \equiv {\mathrm {const}}\), \(v \equiv {\mathrm {const}}\), an EC and PEP numerical flux must be of the form
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} v, \\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} v^2 + p, \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} v^3 + \frac{\gamma }{\gamma - 1} p v. \end{aligned} \end{aligned} \right.$$
(21)
Proof
Comparing (11) and (17),
$$\begin{aligned} \frac{\gamma }{\gamma - 1} \frac{p}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} f^{{\mathrm {num}}}_{\rho } \end{aligned}$$
(22)
must be independent of \(\rho _\pm \). Hence, \(f^{{\mathrm {num}}}_{\rho }\) must be of the form \(f^{{\mathrm {num}}}_{\rho } = \{\!\{\rho \}\!\}_{{\mathrm {log}}} v\) for \(p \equiv {\mathrm {const}}, v \equiv {\mathrm {const}}\). Inserting the PEP property (11) for \(f^{{\mathrm {num}}}_{\rho v}\) results in the final form (21).
Lemma 4
For \(v \equiv {\mathrm {const}}\), an EC and PEP numerical flux for which the density flux does not depend on the pressure must be of the form
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} v,\\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} v^2 + \varphi (\rho _\pm , p_\pm ),\\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} v^3 + \frac{1}{\gamma - 1} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}^{-1} v + \varphi (\rho _\pm , p_\pm ) v, \end{aligned} \end{aligned} \right.$$
(23)
where \(\varphi (\rho _\pm , p_\pm )\) is some kind of mean value depending on \(\rho _\pm , p_\pm \) such that \(\forall \rho _\pm , p > 0:\varphi (\rho _+, \rho _-, p, p) = p\).
Proof
Because of Lemma 3, the general form of dependencies on \(\rho \) for \(p \equiv {\mathrm {const}}\) is already determined. The remaining degrees of freedom for non-constant pressure p can be described by two functions \(\varphi _{1,2}\), resulting in the numerical fluxes
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} v,\\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} v^2 + \varphi _1(\rho _\pm , p_\pm ),\\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} v^3 + \frac{\gamma }{\gamma - 1} \varphi _2(\rho _\pm , p_\pm ) v, \end{aligned} \end{aligned} \right.$$
(24)
where \(\varphi _{1,2}\) depend on \(\rho _\pm , p_\pm \) such that
$$\begin{aligned} \forall p, \rho _\pm > 0\!:\quad \varphi _{1,2}(\rho _+, \rho _-, p, p) = p. \end{aligned}$$
(25)
Inserting this form of the numerical flux in the left-hand side of (7) for \(v \equiv {\mathrm {const}}\) results in
$$\begin{aligned} \begin{aligned}{}[\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!]&= \left( [\![\log \rho ]\!] + \frac{1}{\gamma - 1} [\![\log \frac{\rho }{p}]\!] - \frac{v^2}{2} [\![\frac{\rho }{p}]\!] \right) f^{{\mathrm {num}}}_{\rho }\\&\quad + v [\![\frac{\rho }{p}]\!] f^{{\mathrm {num}}}_{\rho v} - [\![\frac{\rho }{p}]\!] f^{{\mathrm {num}}}_{\rho e} - v [\![\rho ]\!] \\&= v [\![\rho ]\!] + \frac{v}{\gamma - 1} \frac{[\![{\rho }/{p}]\!]}{\{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}} \{\!\{\rho \}\!\}_{{\mathrm {log}}} - \frac{v^3}{2} [\![\frac{\rho }{p}]\!] \{\!\{\rho \}\!\}_{{\mathrm {log}}} + v^3 [\![\frac{\rho }{p}]\!] \{\!\{\rho \}\!\}_{{\mathrm {log}}} \\&\quad + v [\![\frac{\rho }{p}]\!] \varphi _1 - \frac{v^3}{2} [\![\frac{\rho }{p}]\!] \{\!\{\rho \}\!\}_{{\mathrm {log}}} - \frac{\gamma }{\gamma - 1} v [\![\frac{\rho }{p}]\!] \varphi _2 - v [\![\rho ]\!] \\&= \frac{v}{\gamma - 1} \frac{\{\!\{\rho \}\!\}_{{\mathrm {log}}}}{\{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}} [\![\frac{\rho }{p}]\!] + v [\![\frac{\rho }{p}]\!] \varphi _1 - \frac{\gamma }{\gamma - 1} v [\![\frac{\rho }{p}]\!] \varphi _2. \end{aligned} \end{aligned}$$
(26)
Since this has to vanish for arbitrary \(\rho _\pm , p_\pm , v\),
$$\begin{aligned} \varphi _2 = \frac{1}{\gamma } \frac{\{\!\{\rho \}\!\}_{{\mathrm {log}}}}{\{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}} + \frac{\gamma - 1}{\gamma } \varphi _1. \end{aligned}$$
(27)
Having established the lemmata above, we are prepared to prove Theorem 1.
Proof of Theorem 1
The KEP (10) property is satisfied by construction. Moreover, the numerical flux for the total energy satisfies the PEP property (11), since it can be written as
$$\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} (\!(v \cdot v)\!) + \frac{1}{\gamma - 1} \{\!\{{1}/{p}\}\!\}_{{\mathrm {log}}}^{-1} \{\!\{v\}\!\} + (\!(p \cdot v)\!)\\&\quad + \frac{1}{\gamma - 1} \left( \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}^{-1} - \{\!\{{1}/{p}\}\!\}_{{\mathrm {log}}}^{-1} \right) \{\!\{v\}\!\}, \end{aligned} \end{aligned}$$
(28)
where
$$\begin{aligned} \frac{1}{\gamma - 1} \left( \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}^{-1} - \{\!\{{1}/{p}\}\!\}_{{\mathrm {log}}}^{-1} \right) \{\!\{v\}\!\} = 0, \end{aligned}$$
(29)
whenever p is constant. Finally, the flux is EC as shown in [33, 34]. It is the only numerical flux with all these properties for \(v \equiv {\mathrm {const}}\), since the KEP property (10) requires the pressure mean in (23) to be \(\varphi = \{\!\{p\}\!\}\).
Remark 3
The pressure mean in the momentum flux is determined uniquely by the KEP property (10), resulting in a pressure mean depending on the density in the energy flux. As required by the PEP property (11), this dependency occurs only for non-constant pressure. However, such a mixed dependency on \(\rho \) and p of an approximation to the pressure is necessary for EC and PEP fluxes because of Lemma 4.
We have obtained a complete characterization of numerical fluxes for the compressible Euler equations that are EC, KEP, PEP, and have a density flux \(f^{{\mathrm {num}}}_\rho \) that does not depend on the pressure for \(v \equiv {\mathrm {const}}\) in Theorem 1. The analogous characterization for \(p \equiv {\mathrm {const}}\) is a bit more involved and leaves a degree of freedom.
Lemma 5
For fixed \(p \equiv {\mathrm {const}}\), a (symmetric) EC, KEP, and PEP numerical flux must be of the form
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} + \chi (\rho _\pm , v_\pm ), \\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\}^2 + p + \{\!\{v\}\!\} \chi (\rho _\pm , v_\pm ), \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} (\!(v \cdot v)\!) + \frac{\gamma }{\gamma - 1} p \{\!\{v\}\!\} \\&\quad +\left( \frac{1}{2} (\!(v \cdot v)\!) + \frac{\gamma }{\gamma - 1} \frac{p}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} \right) \chi (\rho _\pm , v_\pm ), \end{aligned} \end{aligned} \right.$$
(30)
where \(\chi \) is a function depending on \(\rho _\pm , v_\pm \) (symmetrically with respect to ±) such that \(\forall \rho _\pm , v :\chi (\rho _+, \rho _-, v, v) = 0\).
Proof
Because of consistency, every numerical flux can be written as the sum of a given numerical flux and a perturbation \(\chi \) that is consistent with zero. Using (14) as baseline flux for fixed \(p \equiv {\mathrm {const}}\), every numerical flux can be written as
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} + \chi _{\rho }(\rho _\pm , v_\pm ), \\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\}^2 + p + \chi _{\rho v}(\rho _\pm , v_\pm ), \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} (\!(v \cdot v)\!) + \frac{\gamma }{\gamma - 1} p \{\!\{v\}\!\} + \chi _{\rho e}(\rho _\pm , v_\pm ), \end{aligned} \end{aligned} \right.$$
(31)
where \(\forall \rho , v :\chi _{\rho }(\rho , \rho , v, v) = \chi _{\rho v}(\rho , \rho , v, v) = \chi _{\rho e}(\rho , \rho , v, v) = 0\). Kinetic energy preservation (10) requires \(\chi _{\rho v} = \{\!\{v\}\!\} \chi _{\rho }\). Since the chosen baseline numerical flux (14) is EC, requiring entropy conservation for the perturbed numerical flux yields
$$\begin{aligned} \begin{aligned} 0&= [\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!] = \left( \frac{\gamma }{\gamma - 1} [\![\log \rho ]\!] - \frac{1}{2 p} [\![\rho v^2]\!] \right) \chi _{\rho } + \frac{1}{p} [\![\rho v]\!] \{\!\{v\}\!\} \chi _{\rho } - \frac{1}{p} [\![\rho ]\!] \chi _{\rho e} \\&= \left( \frac{\gamma }{\gamma - 1} \frac{[\![\rho ]\!]}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} - \frac{1}{2 p} \{\!\{v^2\}\!\} [\![\rho ]\!] + \frac{1}{p} \{\!\{v\}\!\}^2 [\![\rho ]\!] \right) \chi _{\rho } - \frac{1}{p} [\![\rho ]\!] \chi _{\rho e} \\&= \left( \frac{1}{2 p} (\!(v \cdot v)\!) [\![\rho ]\!] + \frac{\gamma }{\gamma - 1} \frac{[\![\rho ]\!]}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} \right) \chi _{\rho } - \frac{1}{p} [\![\rho ]\!] \chi _{\rho e}. \end{aligned} \end{aligned}$$
(32)
Hence,
$$\begin{aligned} \chi _{\rho e}(\rho _\pm , v_\pm ) = \left( \frac{1}{2} (\!(v \cdot v)\!) + \frac{\gamma }{\gamma - 1} \frac{p}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} \right) \chi _{\rho }(\rho _\pm , v_\pm ). \end{aligned}$$
(33)
Pressure equilibrium preservation (11) requires \(\chi _{\rho e} = \frac{1}{2} v^2 \chi _\rho + {\mathrm {const}}(p, v)\) for \(v \equiv {\mathrm {const}}\). The first term \(\frac{1}{2} (\!(v \cdot v)\!) \chi _{\rho }\) satisfies this requirement. However, the second term \(\frac{\gamma }{\gamma - 1} \frac{p}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} \chi _{\rho }\) fits if and only if \(\forall \rho _\pm , v :\chi (\rho _+, \rho _-, v, v) = 0\).
Remark 4
Extending the numerical flux (30) developed for fixed pressure \(p \equiv {\mathrm {const}}\) to general variable pressures results in a pressure-dependent density flux unless the perturbation vanishes, i.e., \(\chi = 0\). Thus, the numerical flux (14) is also unique for general velocities v in the class of continuous numerical fluxes with the properties given in Theorem 1.
Proof
Using the ansatz (31) for a general pressure p yields
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} + \chi _{\rho }(\rho _\pm , v_\pm ), \\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\}^2 + \{\!\{p\}\!\} + \chi _{\rho v}(\rho _\pm , v_\pm , p_\pm ), \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{v\}\!\} (\!(v \cdot v)\!) + \frac{1}{\gamma - 1} \{\!\{\rho \}\!\}_{{\mathrm {log}}} \{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}^{-1} \{\!\{v\}\!\} + (\!(p \cdot v)\!) \\&\quad + \chi _{\rho e}(\rho _\pm , v_\pm , p_\pm ), \end{aligned} \end{aligned} \right.$$
(34)
where \(\forall \rho , v, p :\chi _{\rho }(\rho , \rho , v, v) = \chi _{\rho v}(\rho , \rho , v, v, p, p) = \chi _{\rho e}(\rho , \rho , v, v, p, p) = 0\). Kinetic energy preservation (10) requires again \(\chi _{\rho v} = \{\!\{v\}\!\} \chi _{\rho }\). Requiring entropy conservation additionally yields
$$\begin{aligned} 0&= [\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!] = \left( [\![\log \rho ]\!] + \frac{1}{\gamma - 1} [\![\log {\rho }/{p}]\!] - \frac{1}{2} [\![{\rho v^2}/{p}]\!] \right) \chi _{\rho } \nonumber \\&\quad + [\![{\rho v}/{p}]\!] \{\!\{v\}\!\} \chi _{\rho } - [\![{\rho }/{p}]\!] \chi _{\rho e} \nonumber \\&= \left( \frac{[\![\rho ]\!]}{\{\!\{\rho \}\!\}_{{\mathrm {log}}}} + \frac{1}{\gamma - 1} \frac{[\![{\rho }/{p}]\!]}{\{\!\{{\rho }/{p}\}\!\}_{{\mathrm {log}}}} - \frac{1}{2} \{\!\{v^2\}\!\} [\![{\rho }/{p}]\!] + [\![{\rho }/{p}]\!] \{\!\{v\}\!\}^2 \right) \chi _{\rho } - [\![{\rho }/{p}]\!] \chi _{\rho e}. \end{aligned}$$
(35)
For arbitrary \(\rho _\pm , v_\pm \), choosing \(p_\pm \) such that \([\![{\rho }/{p}]\!] = 0\) requires \(\chi _{\rho } = 0\). Hence, the perturbation \(\chi \) must vanish if the density flux does not depend on the pressure.
The KEP and PEP Two-Point Flux of Shima et al.
Shima et al. [44] introduced a modification to their KEP flux [26] and constructed a KEP flux with the PEP property,
$$\left\{\begin{aligned} \begin{aligned} f^{{\mathrm {num}}}_{\rho }&= \{\!\{\rho \}\!\} \{\!\{v\}\!\}, \\ f^{{\mathrm {num}}}_{\rho v}&= \{\!\{\rho \}\!\} \{\!\{v\}\!\}^2 + \{\!\{p\}\!\}, \\ f^{{\mathrm {num}}}_{\rho e}&= \frac{1}{2} \{\!\{\rho \}\!\} \{\!\{v\}\!\} (\!(v \cdot v)\!) + \frac{1}{\gamma - 1} \{\!\{p\}\!\} \{\!\{v\}\!\} + (\!(p \cdot v)\!). \end{aligned} \end{aligned}\right.$$
(36)
We note that the density flux and the general structure of the momentum and energy fluxes is very closely related to Ranocha’s two-point flux (14), except for the EC property, because Shima et al. used the arithmetic mean in the density flux instead of the logarithmic mean. Although the numerical flux (36) is not EC, it has four desirable properties, namely KEP, PEP, and a pressure-independent density flux. As we realize later in Sect. 3, the fourth desirable property is the arithmetic mean of the density in the density flux function, as it enhances robustness for the density wave propagation.
In their paper, Shima et al. demonstrated numerically very good robustness of their novel KEP and PEP discretization, even for highly non-linear problems such as underresolved turbulence. Hence, an interesting question is whether there is an entropy function for the compressible Euler equations such that the two-point flux function of Shima et al. with the arithmetic mean happens to be an EC flux. This would be a possible explanation of the improved numerical robustness of this flux for non-linear problems. To partially answer this question, we consider next the family of entropy functions introduced by Harten [15].
Harten [15] discovered the family of entropy functions for the Euler equation (2)
$$\begin{aligned} U = -\rho h(s), \qquad s = \log \frac{p}{\rho ^\gamma }, \end{aligned}$$
(37)
where h is a sufficiently smooth function satisfying
$$\begin{aligned} \frac{h''(s)}{h'(s)} < \frac{1}{\gamma } \end{aligned}$$
(38)
to ensure convexity of the entropy function U, Eq. (37). In particular, Harten discovered the one-parameter family
$$\begin{aligned} U = -\rho h(s), \qquad h(s) = \frac{\gamma + \alpha }{\gamma - 1} {\mathrm {e}}^{s / (\gamma + \alpha )} = \frac{\gamma + \alpha }{\gamma - 1} (p / \rho ^\gamma )^{1 / (\gamma + \alpha )}, \qquad \alpha > 0. \end{aligned}$$
(39)
Up to now, we considered the entropy (8) given by \(h(s) \propto s\) above, since it is the only convex entropy (37) which symmetrizes the compressible Navier-Stokes equations with heat flux [19]. Nevertheless, it is interesting to know whether there are other entropies (37) of the compressible Euler equation (2) that result in a corresponding EC numerical density flux \(f^{{\mathrm {num}}}_{\rho }\), where the mean value of the density is arithmetic.
Following the approach used in Sect. 2.2, we will make use of the entropy variables
$$\begin{aligned} w = \frac{(\gamma - 1) h'(s)}{p} \left( - \frac{1}{2} \rho v^2 - \frac{p}{\gamma - 1} \left( \frac{h(s)}{h'(s)} - \gamma \right) , \rho v, - \rho \right) , \end{aligned}$$
(40)
and the flux potential
$$\begin{aligned} \psi = (\gamma - 1) h'(s) \rho v, \end{aligned}$$
(41)
associated with the entropy (37). Lemma 2 is a special case of
Lemma 6
For \(p \equiv {\mathrm {const}}\), \(v \equiv {\mathrm {const}}\), an EC numerical flux for the entropy (37) that is also KEP or PEP satisfies
$$\begin{aligned} f^{{\mathrm {num}}}_{\rho e} = \frac{1}{2} v^2 f^{{\mathrm {num}}}_{\rho } + \frac{p}{\gamma - 1} \frac{[\![\gamma h' - h]\!]}{[\![\rho h']\!]} f^{{\mathrm {num}}}_{\rho }. \end{aligned}$$
(42)
Proof
For \(p \equiv {\mathrm {const}}\), \(v \equiv {\mathrm {const}}\), the left-hand side of (7) reduces to
$$\begin{aligned}{}[\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!]= & {} \left( - \frac{1}{2} v^2 \frac{\gamma - 1}{p} [\![\rho h']\!] - [\![h]\!] + \gamma [\![h']\!] \right) f^{{\mathrm {num}}}_{\rho }\nonumber \\&+ v \frac{\gamma - 1}{p} [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho v} - \frac{\gamma - 1}{p} [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho e} - (\gamma - 1) v [\![\rho h']\!]. \end{aligned}$$
(43)
This term vanishes if and only if
$$\begin{aligned} 0= & {} - \frac{1}{2} v^2 [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho } - \frac{1}{\gamma - 1} p [\![h]\!] f^{{\mathrm {num}}}_{\rho } + \frac{\gamma }{\gamma - 1} p [\![h']\!] f^{{\mathrm {num}}}_{\rho }+ v [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho v} \nonumber \\&- [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho e} - p v [\![\rho h']\!]. \end{aligned}$$
(44)
Inserting \(f^{{\mathrm {num}}}_{\rho v} = v f^{{\mathrm {num}}}_{\rho } + p\) from the KEP (10) or PEP (11) property results in
$$\begin{aligned} 0 = \frac{1}{2} v^2 [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho } - \frac{1}{\gamma - 1} p [\![h]\!] f^{{\mathrm {num}}}_{\rho } + \frac{\gamma }{\gamma - 1} p [\![h']\!] f^{{\mathrm {num}}}_{\rho } - [\![\rho h']\!] f^{{\mathrm {num}}}_{\rho e}. \end{aligned}$$
(45)
This expression has to vanish for arbitrary values of \(\rho _\pm \) for an EC flux, resulting in (42).
Comparing (11) and (42), a PEP flux that is also EC for (37) must contain an average of the density proportional to
$$\begin{aligned} \frac{ [\![\rho h']\!] }{ [\![\gamma h' - h]\!] }. \end{aligned}$$
(46)
In general, (46) is not the arithmetic mean of \(\rho _\pm \). It becomes the linear mean proportional to \(\{\!\{\rho \}\!\}\) for \(p \equiv {\mathrm {const}}\) for the choice of h as in (39) with \(\alpha = - 2 \gamma \). However, in this case, the resulting U is not convex anymore. Hence, entropy-conservative and pressure equilibrium preserving numerical fluxes for the compressible Euler equations have to use nonlinear means of the density and we have demonstrated that the two-point flux of Shima et al. is not related to one of Harten’s entropies.
Corollary 1
There is no Harten entropy pair for the compressible Euler equations such that a corresponding EC two-point flux with the KEP and PEP property uses the arithmetic mean of the density in the density flux.
So far, we have not found any evidence, that there is another strictly convex entropy pair for which the EC flux with KEP and PEP might have an arithmetic mean and thus have the conjecture, that there is none.
Finally, it is interesting to see whether the arithmetic mean can be used in the density flux of an EC flux if the additional constraints are relaxed by not requiring the KEP/PEP property anymore. Considering again the family of entropies (37), we consider the case \(v \equiv {\mathrm {const}}\), \(h'(s) \rho / p \equiv {\mathrm {const}}\). Inserting the entropy variables (40) into the EC condition (7) results in
$$\begin{aligned} 0 = [\![w]\!] \cdot f^{{\mathrm {num}}}- [\![\psi ]\!] = - [\![h(s) - \gamma h'(s)]\!] f^{{\mathrm {num}}}_{\rho } - (\gamma - 1) [\![h'(s) \rho v]\!]. \end{aligned}$$
(47)
Hence, the density flux must again contain an average of the density proportional to (46), but for the case of \(h'(s) \rho p \equiv {\mathrm {const}}\) instead of the case \(p \equiv {\mathrm {const}}\) discussed above. For a given entropy such as (8) or (39), it is easy to solve \(h'(s_+) \rho _+ / p_+ = h'(s_-) \rho _- / p_-\) for \(\rho _+\) and pick values of \(p_\pm , \rho _-\) such that (47) is not satisfied by \(f^{{\mathrm {num}}}_{\rho } = \{\!\{\rho \}\!\} v\). Hence, we arrive at
Corollary 2
There is no Harten entropy pair for the compressible Euler equations such that a corresponding EC two-point flux uses the arithmetic mean of density in the density flux.
Remark 5
We refer to an entropy pair if the entropy function is strictly convex (resulting in an invertible transformation from the conserved variables to the entropy variables). Linear functionals of the conserved variables are of course non-strictly convex and can be combined with a density flux using the arithmetic mean.