Skip to main content

A Third-Order Entropy Stable Scheme for the Compressible Euler Equations

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

A third-order WENO reconstruction has been recently proposed (Fjordholm and Ray, J Sci Comput, 68(1):42–63, 2016, [5]) in the context of finite difference schemes for conservation laws and tested for scalar conservation laws. The method, which is called SP-WENO, satisfies the sign property required for constructing high-order finite difference schemes for conservation laws that are provably entropy stable. In the present work, we extend the reconstruction procedure to systems of conservation laws in multiple space dimensions, with a focus on the compressible Euler equations. SP-WENO in its original form can lead to large overshoots near discontinuities when tested with the Euler equations. We show that SP-WENO can be modified to control oscillations near discontinuities, without compromising on the accuracy for smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Chandrashekar, Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  Google Scholar 

  2. P. Chandrashekar, C. Klingenberg, SIAM J. Numer. Anal. 54(2), 1313–1340 (2016)

    Article  MathSciNet  Google Scholar 

  3. X. Cheng, Y. Nie, J. Hyperbolic Differ. Equ. 13(1), 129–145 (2016)

    Article  MathSciNet  Google Scholar 

  4. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325, 3rd edn., Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 2010)

    Book  Google Scholar 

  5. U.S. Fjordholm, D. Ray, J. Sci. Comput. 68(1), 42–63 (2016)

    Article  MathSciNet  Google Scholar 

  6. U.S. Fjordholm, S. Mishra, E. Tadmor, SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  Google Scholar 

  7. U.S. Fjordholm, S. Mishra, E. Tadmor, FoCM 13(2), 139–159 (2013)

    Google Scholar 

  8. S. Gottlieb, C.W. Shu, E. Tadmor, SIAM Rev. 43(1), 89–112 (2001). (electronic)

    Article  MathSciNet  Google Scholar 

  9. A. Harten, J. Comput. Phys. 49(1), 151–164 (1983)

    Article  MathSciNet  Google Scholar 

  10. F. Ismail, P.L. Roe, J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  Google Scholar 

  11. G.-S. Jiang, C.-W. Shu, J. Comput. Phys. 126(1), 202–228 (1996). (Academic Press Professional, Inc.)

    Google Scholar 

  12. P.G. Lefloch, J.M. Mercier, C. Rohde, SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)

    Article  MathSciNet  Google Scholar 

  13. A. Lerat, F. Falissard, J. Sidès, J. Comput. Phys. 225(1), 635–651 (2007)

    Article  MathSciNet  Google Scholar 

  14. X.-D. Liu, S. Osher, T. Chan, J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  15. S. Mishra, U.S. Fjordholm, E. Tadmor, in Foundations of Computational Mathematics Proceedings FoCM held Hong Kong 2008. London Mathematical Society Lecture Note Series, vol. 363 (2009), pp. 93–139

    Google Scholar 

  16. A.M. Rogerson, E. Meiburg, J. Sci. Comput. 5(2), 151–167 (1990)

    Article  Google Scholar 

  17. C.-W. Shu, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, vol. 1697, Lecture Notes in Mathematics (Springer, Berlin, 1998), pp. 325–432

    Book  Google Scholar 

  18. C.-W. Shu, S. Osher, J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  19. E. Tadmor, Math. Comput. 43(168), 369–381 (1984)

    Article  Google Scholar 

  20. E. Tadmor, Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  21. E. Tadmor, W. Zhong, in Mathematics and Computation, a Contemporary View: The Abel Symposium 2006, Proceedings of the Third Abel Symposium, Alesund, Norway, 25–27 May 2006 (2006), pp. 67–94

    Google Scholar 

  22. A.R. Winters, G.J. Gassner, J. Comput. Phys. 304, 72–108 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work benefited from the support of the AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems, established in TIFR/ICTS, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deep Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ray, D. (2018). A Third-Order Entropy Stable Scheme for the Compressible Euler Equations. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_38

Download citation

Publish with us

Policies and ethics