Skip to main content
Log in

Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations II: HHO-Inspired Methods

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In Chen et al. (J. Sci. Comput. 81(3): 2188–2212, 2019), we considered a superconvergent hybridizable discontinuous Galerkin (HDG) method, defined on simplicial meshes, for scalar reaction-diffusion equations and showed how to define an interpolatory version which maintained its convergence properties. The interpolatory approach uses a locally postprocessed approximate solution to evaluate the nonlinear term, and assembles all HDG matrices once before the time integration leading to a reduction in computational cost. The resulting method displays a superconvergent rate for the solution for polynomial degree \(k\geqslant 1\). In this work, we take advantage of the link found between the HDG and the hybrid high-order (HHO) methods, in Cockburn et al. (ESAIM Math. Model. Numer. Anal. 50(3): 635–650, 2016) and extend this idea to the new, HHO-inspired HDG methods, defined on meshes made of general polyhedral elements, uncovered therein. For meshes made of shape-regular polyhedral elements affine-equivalent to a finite number of reference elements, we prove that the resulting interpolatory HDG methods converge at the same rate as for the linear elliptic problems. Hence, we obtain superconvergent methods for \(k\geqslant 0\) by some methods. We thus maintain the superconvergence properties of the original methods. We present numerical results to illustrate the convergence theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

    Chapter  Google Scholar 

  2. Brezzi, F., Douglas, J., Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  3. Burman, E., Ern, A.: An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56(3), 1525–1546 (2018). https://doi.org/10.1137/17M1154266

    Article  MathSciNet  MATH  Google Scholar 

  4. Casoni, E., Peraire, J., Huerta, A.: One-dimensional shock-capturing for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 71(6), 737–755 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comput. 86(306), 1643–1670 (2017). https://doi.org/10.1090/mcom/3195

    Article  MathSciNet  MATH  Google Scholar 

  6. Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comp. 81(277), 107–129 (2012). https://doi.org/10.1090/S0025-5718-2011-02525-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C.M., Larsson, S., Zhang, N.Y.: Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation. IMA J. Numer. Anal. 9(4), 507–524 (1989). https://doi.org/10.1093/imanum/9.4.507

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G., Cockburn, B., Singler, J., Zhang, Y.: Superconvergent interpolatory HDG methods for reaction diffusion equations I: an \({\rm HDG}_k\) method. J. Sci. Comput. 81(3), 2188–2212 (2019). https://doi.org/10.1007/s10915-019-01081-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G., Cui, J.: On the error estimates of a hybridizable discontinuous Galerkin method for second-order elliptic problem with discontinuous coefficients. IMA J. Numer. Anal. 40(2), 1577–1600 (2020). https://doi.org/10.1093/imanum/drz003

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Douglas, J., Jr.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mat. Appl. Comput. 10(2), 137–160 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Christie, I., Griffiths, D.F., Mitchell, A.R., Sanz-Serna, J.M.: Product approximation for nonlinear problems in the finite element method. IMA J. Numer. Anal. 1(3), 253–266 (1981)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G., Brezzi, F., Cagniani, A., Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 114, pp. 129–177. Springer, Berlin (2016)

  13. Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Stein, E., Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics, vol. 5, 2nd edn, pp. 141–203. Wiley, Chichester (2018)

    Google Scholar 

  14. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016). https://doi.org/10.1137/15M1008014

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Singler, J.R., Zhang, Y.: Interpolatory HDG method for parabolic semilinear PDEs. J. Sci. Comput. 79, 1777–1800 (2019)

    Article  MathSciNet  Google Scholar 

  19. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Method Appl. Mech. Engrg. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  20. Di Pietro, D.A., Ern, A.: Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris Ser. I 353, 31–34 (2015)

    Article  MathSciNet  Google Scholar 

  21. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)

    Article  MathSciNet  Google Scholar 

  22. Dickinson, B.T., Singler, J.R.: Nonlinear model reduction using group proper orthogonal decomposition. Int. J. Numer. Anal. Model. 7(2), 356–372 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Douglas, J., Jr., Dupont, T.: The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures. Math. Comput. 20(130), 360–389 (1975)

    Article  MathSciNet  Google Scholar 

  24. Du, S., Sayas, F.J.: New analytical tools for HDG in elasticity, with applications to elastodynamics. Math. Comput. 89(324), 1745–1782 (2020). https://doi.org/10.1090/mcom/3499

    Article  MathSciNet  MATH  Google Scholar 

  25. Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Engrg. 37(2), 225–244 (1983). https://doi.org/10.1016/0045-7825(83)90122-6

    Article  MathSciNet  Google Scholar 

  26. Fletcher, C.A.J.: Time-splitting and the group finite element formulation. In: Computational techniques and applications: CTAC-83, pp. 517–532. North-Holland, Amsterdam (1984)

    Google Scholar 

  27. Gastaldi, L., Nochetto, R.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Modél. Math. Anal. Numér. 23, 103–128 (1989)

    Article  MathSciNet  Google Scholar 

  28. Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2012)

    Article  MathSciNet  Google Scholar 

  29. Kabaria, H., Lew, A.J., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Engrg. 283, 303–329 (2015)

    Article  MathSciNet  Google Scholar 

  30. Kim, D., Park, E.J., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51(2), 267–288 (2014). https://doi.org/10.4134/JKMS.2014.51.2.267

    Article  MathSciNet  MATH  Google Scholar 

  31. Larsson, S., Thomée, V., Zhang, N.Y.: Interpolation of coefficients and transformation of the dependent variable in finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11(1), 105–124 (1989). https://doi.org/10.1002/mma.1670110108

    Article  MathSciNet  MATH  Google Scholar 

  32. LĂ³pez Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability. IMA J. Numer. Anal. 8(1), 71–84 (1988)

    Article  MathSciNet  Google Scholar 

  33. Moro, D., Nguyen, N.C., Peraire, J.: A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws. Int. J. Numer. Methods Engrg. 91, 950–970 (2012)

    Article  MathSciNet  Google Scholar 

  34. Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231, 5955–5988 (2012)

    Article  MathSciNet  Google Scholar 

  35. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009). https://doi.org/10.1016/j.jcp.2009.08.030

    Article  MathSciNet  MATH  Google Scholar 

  36. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations (AIAA Paper 2010-362). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit. Orlando, Florida (2010)

  37. Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MathSciNet  Google Scholar 

  38. Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674–692 (2015)

    Article  MathSciNet  Google Scholar 

  39. Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327–340 (2015)

    Article  MathSciNet  Google Scholar 

  40. Oikawa, I.: Analysis of a reduced-order HDG method for the Stokes equations. J. Sci. Comput. 67(2), 475–492 (2016)

    Article  MathSciNet  Google Scholar 

  41. Peraire, J., Nguyen, N.C., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations (AIAA Paper 2010-363). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit. Orlando, Florida (2010)

  42. Sanz-Serna, J.M., Abia, L.: Interpolation of the coefficients in nonlinear elliptic Galerkin procedures. SIAM J. Numer. Anal. 21(1), 77–83 (1984). https://doi.org/10.1137/0721004

    Article  MathSciNet  MATH  Google Scholar 

  43. SchĂ¼tz, J., May, G.: A hybrid mixed method for the compressible Navier-Stokes equations. J. Comput. Phys. 240, 58–75 (2013)

    Article  MathSciNet  Google Scholar 

  44. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    Article  MathSciNet  Google Scholar 

  45. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991)

    Article  MathSciNet  Google Scholar 

  46. Terrana, S., Nguyen, N., Bonet, J., Peraire, J.: A hybridizable discontinuous Galerkin method for both thin and 3d nonlinear elastic structures. Comput. Methods Appl. Mech. Engrg. 352, 561–585 (2019)

    Article  MathSciNet  Google Scholar 

  47. Tourigny, Y.: Product approximation for nonlinear Klein-Gordon equations. IMA J. Numer. Anal. 10(3), 449–462 (1990). https://doi.org/10.1093/imanum/10.3.449

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C.: Convergence of the interpolated coefficient finite element method for the two-dimensional elliptic sine-Gordon equations. Numer. Methods Partial Differ. Equ. 27(2), 387–398 (2011). https://doi.org/10.1002/num.20526

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Z.: Nonlinear model reduction based on the finite element method with interpolated coefficients: semilinear parabolic equations. Numer. Methods Partial Differ. Equ. 31(6), 1713–1741 (2015). https://doi.org/10.1002/num.21961

    Article  MathSciNet  MATH  Google Scholar 

  50. Xie, Z., Chen, C.: The interpolated coefficient FEM and its application in computing the multiple solutions of semilinear elliptic problems. Int. J. Numer. Anal. Model. 2(1), 97–106 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Xiong, Z., Chen, C.: Superconvergence of rectangular finite element with interpolated coefficients for semilinear elliptic problem. Appl. Math. Comput. 181(2), 1577–1584 (2006). https://doi.org/10.1016/j.amc.2006.02.040

    Article  MathSciNet  MATH  Google Scholar 

  52. Xiong, Z., Chen, C.: Superconvergence of triangular quadratic finite element with interpolated coefficients for semilinear parabolic equation. Appl. Math. Comput. 184(2), 901–907 (2007). https://doi.org/10.1016/j.amc.2006.05.192

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiong, Z., Chen, Y., Zhang, Y.: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation. J. Comput. Appl. Math. 214(1), 313–317 (2008). https://doi.org/10.1016/j.cam.2007.02.023

    Article  MathSciNet  MATH  Google Scholar 

  54. Yu, Y., Chen, G., Pi, L., Zhang, Y.: A new ensemble HDG method for parameterized convection diffusion PDEs. Numer. Math. Theor. Methods Appl. 14(1), 144–175 (2021). https://doi.org/10.4208/nmtma.OA-2019-0190

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Singler and Y. Zhang thank the IMA for funding research visits, during which some of this work was completed.

Funding

G. Chen was supported by the National Natural Science Foundation of China (NSFC) Grant 11801063, and the Fundamental Research Funds for the Central Universities Grant YJ202030. B. Cockburn was partially supported by the National Science Foundation Grant DMS-1912646. J. Singler and Y. Zhang were supported in part by the National Science Foundation Grant DMS-1217122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangwen Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A Approximation Estimates of Auxiliary Projections

1.1 A.1 Proof of (10a)

Here we prove the estimate for \(\varPi _{k+1}^\star u- u\) in (10a). We are going to use the following auxiliary result.

Lemma A1

For any \(K\in \mathcal {T}_h\), we have

$$\begin{aligned} \Vert \varPi _{k+1}^\star u-u\Vert _{K} \leqslant C\left( h\Vert \nabla u-\nabla \varPi ^{\text{o}}_{k+1}u\Vert _{K}+\Vert u-\varPi ^{{\text{o}}}_{k+1}u\Vert _{K}\right) . \end{aligned}$$

Proof

By definitions (3) and (4), we obtain

$$\begin{aligned} (\nabla \varPi _{k+1}^\star u,\nabla z_h)_K&=-(\varPi ^{{\text{o}}}_\ell u,\varDelta z_h)_K+\langle \varPi ^{\partial }_k u,\varvec{n}\cdot \nabla z_h \rangle _{\partial K},\\ (\varPi _{k+1}^\star u,w_h)_K&=(\varPi ^{{\text{o}}}_\ell u,w_h)_K \end{aligned}$$

for all \((z_h,w_h)\in [\mathcal {P}_{\ell }^{k+1}(K)]^\perp \times \mathcal {P}^{\ell }(K) \). This leads to

$$\begin{aligned} (\nabla \varPi _{k+1}^\star u,\nabla z_h)_K&=(\nabla u,\nabla z_h)_K,\\ (\varPi _{k+1}^\star u,w_h)_K&=(\varPi ^{{\text{o}}}_{k+1} u,w_h)_K. \end{aligned}$$

The last equation implies that \(\varPi _{k+1}^\star u-\varPi ^{{\text{o}}}_{k+1}u\in [\mathcal {P}_{\ell }^{k+1}(K)]^{\perp }\) and so, we can then take \(z_h:=\varPi _{k+1}^\star u-\varPi ^{{\text{o}}}_{k+1}u\) in the first equation to get

$$\begin{aligned} \Vert \nabla \varPi _{k+1}^\star u-\nabla \varPi ^{{\text{o}}}_{k+1}u\Vert ^2_{K}=(\nabla \varPi _{k+1}^\star u-\nabla \varPi ^{{\text{o}}}_{k+1}u, \nabla u-\nabla \varPi ^{{\text{o}}}_{k+1}u)_K, \end{aligned}$$

and

$$\begin{aligned} \Vert \nabla \varPi _{k+1}^\star u-\nabla \varPi ^{{\text{o}}}_{k+1}u\Vert _{K}\leqslant \Vert \nabla u-\nabla \varPi ^{{\text{o}}}_{k+1}u\Vert _{K}. \end{aligned}$$

Since \(\varPi _{k+1}^\star u-\varPi ^{{\text{o}}}_{k+1}u\in [\mathcal {P}_{\ell }^{k+1}(K)]^{\perp }\), we have

$$\begin{aligned} (\varPi _{k+1}^\star u-\varPi ^{{\text{o}}}_{k+1}u,1)_K=0, \end{aligned}$$

and using Poincaré’s inequality, we obtain

$$\begin{aligned} \Vert \varPi _{k+1}^\star u-\varPi ^{{\text{o}}}_{k+1}u\Vert _{K} \leqslant C h\Vert \nabla \varPi _{k+1}^\star u-\nabla \varPi ^{{\text{o}}}_{k+1}u\Vert _{K} \leqslant C h\Vert \nabla u-\nabla \varPi ^{{\text{o}}}_{k+1}u\Vert _{K}. \end{aligned}$$

Then the estimate follows by applying the triangle inequality. This completes the proof.

We are now ready to prove (10a). Using inverse inequalities, Poincaré’s inequality, and the approximation properties for \(\varPi _{k+1}^{\text{o}}\), one gets

$$\begin{aligned} \begin{aligned} \Vert u-\varPi _{k+1}^{\star }u\Vert _{0,\infty ,K}&\leqslant \Vert \varPi _{k+1}^{\star }u-\varPi _{k+1}^{\text{o}} u\Vert _{0,\infty ,K} + \Vert \varPi _{k+1}^{\text{o}} u-u\Vert _{0,\infty ,K}\\&\leqslant Ch^{-d/2}\Vert \varPi _{k+1}^{\star }u-\varPi _{k+1}^{\text{o}} u\Vert _{0,K}+ \Vert \varPi _{k+1}^{\text{o}} u-u\Vert _{0,\infty ,K}\\&\leqslant Ch^{1-d/2}| u-\varPi _{k+1}^{\text{o}} u|_{1,K}+ \Vert \varPi _{k+1}^{\text{o}} u-u\Vert _{0,\infty ,K}. \end{aligned} \end{aligned}$$
(A1)

By [1, Lemma 4.3.8], there exists \(Q^{k+1} u\in \mathcal {P}^{k+1}(K)\) such that

$$\begin{aligned} \Vert Q^{k+1} u - u\Vert _{1, \infty ,K}\leqslant C |u|_{1,\infty ,K},\quad \Vert Q^{k+1} u - u\Vert _{0, \infty ,K}\leqslant C h|u|_{1,\infty ,K}. \end{aligned}$$

Hence, by (A1) we have

$$\begin{aligned}&\Vert u-\varPi _{k+1}^{\star }u\Vert _{0,\infty ,K}\\& \leqslant Ch^{1-d/2} \left( \Vert u - Q^{k+1} u \Vert _{1,K} + \Vert Q^{k+1} u-\varPi _{k+1}^{\text{o}} u\Vert _{1,K}\right) \\& +\left( \Vert u - Q^{k+1} u \Vert _{0,\infty ,K} + \Vert Q^{k+1} u-\varPi _{k+1}^{\text{o}} u\Vert _{0,\infty ,K}\right) \\&= Ch^{1-d/2} \left( \Vert u - Q^{k+1} u \Vert _{1,K} + \Vert \varPi _{k+1}^{\text{o}} (Q^{k+1} u- u)\Vert _{1,K}\right) \\& +C\left( \Vert u - Q^{k+1} u \Vert _{0,\infty ,K} + h^{-d/2}\Vert Q^{k+1} u-\varPi _{k+1}^{\text{o}} u\Vert _{K}\right) \\&\leqslant Ch^{1-d/2} \left( \Vert u - Q^{k+1} u \Vert _{1,K} + \Vert \varPi _{k+1}^{\text{o}} (Q^{k+1} u- u)\Vert _{1,K}\right) \\& +C\left( \Vert u - Q^{k+1} u \Vert _{0,\infty ,K} + h^{-d/2}\Vert \varPi _{k+1}^{\text{o}}(Q^{k+1} u- u)\Vert _{K}\right) \\&\leqslant Ch^{1-d/2} \left( \Vert u - Q^{k+1} u \Vert _{1,K} + \Vert Q^{k+1} u- u\Vert _{1,K}\right) \\& +C\left( \Vert u - Q^{k+1} u \Vert _{0,\infty ,K} + h^{-d/2}\Vert Q^{k+1} u- u\Vert _{K}\right) \\&\leqslant Ch^{1-d/2}\Vert u - Q^{k+1} u \Vert _{1,K} + Ch^{-d/2}\Vert u - Q^{k+1} u \Vert _{K} +C\Vert u - Q^{k+1} u \Vert _{0,\infty ,K}\\&\leqslant C h\Vert u - Q^{k+1} u \Vert _{1,\infty ,K} +C \Vert u - Q^{k+1} u \Vert _{0,\infty ,K}\\&\leqslant C h |u|_{1,\infty ,K}. \end{aligned}$$

This completes the proof of (10a).

1.2 A.2 Proof of (10b)

Here, we prove the estimate for \(\varPi _{k+1}^\star u - u_h^\star \) in (10b).

Let \(z_h\in [\mathcal {P}_{\ell }^{k+1}(K)]^{\perp }\) and take \(\varvec{r}_h=\nabla z_h\) in the first equation of Proposition 1 to get

$$\begin{aligned} (\varvec{q}_h,\nabla z_h)-(u_h,\Delta z_h)_{\mathcal {T}_h}+\left\langle \widehat{u}_h,\nabla z_h\cdot \varvec{n} \right\rangle _{\partial {\mathcal {T}_h}} = 0. \end{aligned}$$

Combined with (4a) one gets

$$\begin{aligned} (\nabla u_h^{\star },\nabla z_h)=-(\varvec{q}_h,\nabla z_h), \quad \forall z_h\in [\mathcal {P}_{\ell }^{k+1}(K)]^{\perp }. \end{aligned}$$

By the definition of \(\varPi _{k+1}^{\star }\), as in the proof of Proposition 1 one gets

$$\begin{aligned} ( \nabla \varPi _{k+1}^{\star }u ,\nabla z_{h} )_K&=-(\varPi ^{{\text{o}}}_\ell u,\varDelta z_h)_K+\langle \varPi ^{\partial }_k u,\varvec{n}\cdot \nabla z_h \rangle _{\partial K}=(\nabla u,\nabla z_h)_K. \end{aligned}$$

Let \(e_h=u_h^\star - u_h+\varPi _{\ell }^{\text{o}} u-\varPi _{k+1}^{\star } u\). Then \(e_h\in [\mathcal {P}_{\ell }^{k+1}(K)]^{\perp }\). By the two previous equations, \( \varvec{q} = -\nabla u \), and an inverse inequality we have

$$\begin{aligned} \Vert \nabla e_{h}\Vert _K^2&=(\nabla (u_h^\star - u_h),\nabla e_{h} )_K+( \nabla (\varPi _{\ell }^{\text{o}} u-\varPi _{k+1}^{\star } u),\nabla e_{h} )_K\\&=(-\varvec{q}_h-\nabla u_h,\nabla e_{h} )_K+( \nabla (\varPi _{\ell }^{\text{o}} u-u),\nabla e_{h} )_K \\&=((\varvec{q}-\varvec{\varPi }^{\text{o}}_k\varvec{q})-(\varvec{q}_h-\varvec{\varPi }^{\text{o}}_k\varvec{q}) +\nabla (\varPi _{\ell }^{\text{o}} u-u_h),\nabla e_{h})_K \\&\leqslant C (h^{-1}\Vert u_h-\varPi _{\ell }^{\text{o}} u\Vert _K+\Vert \varvec{q}_h-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _K + \Vert \varvec{q}-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _K )\Vert \nabla e_{h}\Vert _K. \end{aligned}$$

Since \((e_h,1)_K=0\), we can now apply the Poincaré inequality to get

$$\begin{aligned} \Vert e_{h}\Vert _K \leqslant C h \Vert \nabla e_h\Vert _K \leqslant C (\Vert u_h-\varPi _{\ell }^{\text{o}} u\Vert _K+h\Vert \varvec{q}_h-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _K + h\Vert \varvec{q}-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _K). \end{aligned}$$

This means

$$\begin{aligned} \Vert e_{h} \Vert _{\mathcal {T}_h} \leqslant C( \Vert u_h-\varPi _{\ell }^{\text{o}} u\Vert _{\mathcal {T}_h}+h\Vert \varvec{q}_h-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _{\mathcal {T}_h} +h\Vert \varvec{q}-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _{\mathcal {T}_h} ). \end{aligned}$$

Hence, we have

$$\begin{aligned} \Vert \varPi _{k+1}^{\star } u - u_h^\star \Vert _{\mathcal {T}_h}&\leqslant \Vert \varPi _{k+1}^{\star } u -\varPi ^{{\text{o}}}_{\ell } u- u_h^\star + u_h\Vert _{\mathcal {T}_h} + \Vert \varPi ^{{\text{o}}}_{\ell } u-u_h\Vert _{\mathcal {T}_h} \\&\leqslant C ( \Vert u_h-\varPi _{\ell }^{\text{o}} u\Vert _{\mathcal {T}_h}+h\Vert \varvec{q}_h-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _{\mathcal {T}_h} +h\Vert \varvec{q}-\varvec{\varPi }^{\text{o}}_k\varvec{q}\Vert _{\mathcal {T}_h} ). \end{aligned}$$

This completes the proof of (10b).

Appendix B Proof of Theorem 2

This appendix is devoted to the proof of the approximation estimates of Theorem 2. We only give the proofs of the estimates for \(\Vert \varvec{\varPi }_{k}^{\text{o}} \varvec{q} - \overline{\varvec{q}}_h\Vert _{\mathcal {T}_h}\) and \(\Vert \varPi _{\ell }^{\text{o}}u-\overline{u}_h\Vert _{\mathcal {T}_h}\). The proof of the estimate for \(\Vert \partial _t\varPi _{\ell }^{\text{o}}u-\partial _t\overline{u}_h\Vert _{\mathcal {T}_h}\) is very similar and is omitted. We use the notation

$$\begin{aligned} \varepsilon _h^{\varvec{q}}=\varvec{\varPi }_{k}^{\text{o}}\varvec{q}-\overline{\varvec{q}}_h , \quad \varepsilon _h^{ u}=\varPi _{\ell }^{\text{o}} u-\overline{u}_h, \quad \varepsilon _h^{\widehat{u}}=\varPi _{k}^{\partial }u-\widehat{\overline{u}}_h, \quad \text { and } \quad \varepsilon _h^{ u^\star }=\varPi _{k+1}^\star u-\overline{u}_h^\star , \end{aligned}$$

and split the proof into four steps.

1.1 Step 1: Equations for the projections of the errors

Lemma B1

For all \((\varvec{r}_h,v_h,\widehat{v}_h)\in \varvec{V}_h\times W_h\times M_h\), we have

$$\begin{aligned}&(\varepsilon _h^{\varvec{q}},\varvec{r}_h)_{\mathcal {T}_h}-(\varepsilon _h^{u},\nabla \cdot \varvec{r}_h)_{\mathcal {T}_h}+\langle \varepsilon _h^{\widehat{u}},\varvec{r}_h\cdot \varvec{n}\rangle _{\partial {\mathcal {T}_h}} = 0,\\&\quad (\nabla \cdot \varepsilon _h^{\varvec{q}}, v_h)_{\mathcal {T}_h} -\langle \varepsilon _h^{\varvec{q}}\cdot \varvec{n},\widehat{v}_h \rangle _{\partial {\mathcal {T}_h}} +\langle h^{-1}( \varPi ^{\partial }_k \varepsilon _h^{u^\star } -\varepsilon _h^{\widehat{u}}),\varPi ^{\partial }_kv_h^\star -\widehat{v}_h\rangle _{\partial {\mathcal {T}_h}} = RHS_h, \end{aligned}$$

where

$$\begin{aligned} RHS_h:=&\;((\mathbb {I}-\varPi _{\ell }^{\text{o}})(-\Delta u),(\mathbb {I}-\varPi _{\ell }^{\text{o}})v_h^\star ) +E_h(\varvec{q},u;v_h,\widehat{v}_h),\\ E_h(\varvec{q},u;v_h,\widehat{v}_h) :=&-\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q})\cdot \varvec{n},\widehat{v}_h-v_h^\star \rangle _{\partial {\mathcal {T}_h}} +\langle h^{-1}( \varPi _{k+1}^\star u -u),\varPi ^{\partial }_k v_h^\star -\widehat{v}_h\rangle _{\partial {\mathcal {T}_h}}, \end{aligned}$$

and \(\mathbb {I}\) is the identity operator.

Proof

We begin by noting that, by the properties of \(\varvec{\varPi }_k^{\text{o}}\), \(\varPi _{\ell }^{\text{o}}\), and \(\varPi _k^\partial \), we have

$$\begin{aligned}&(\varvec{\varPi }^{\text{o}}_k\varvec{q},\varvec{r}_h)_{\mathcal {T}_h}-(\varPi ^{\text{o}}_{\ell } u,\nabla \cdot \varvec{r}_h)_{\mathcal {T}_h}+\langle \varPi ^{\partial }_{k}u,\varvec{r}_h\cdot \varvec{n} \rangle _{\partial {\mathcal {T}_h}}\\&\quad =(\varvec{q},\varvec{r}_h)_{\mathcal {T}_h}-( u,\nabla \cdot \varvec{r}_h)_{\mathcal {T}_h}+\left\langle u,\varvec{r}_h\cdot \varvec{n} \right\rangle _{\partial {\mathcal {T}_h}}=0, \end{aligned}$$

since \(\varvec{q}+\nabla u=0\). Also, since \(\langle \varvec{q}\cdot \varvec{n},\widehat{v}_h \rangle _{\partial {\mathcal {T}_h}}=0\), we have

$$\begin{aligned} (\nabla \cdot \varvec{\varPi }^{\text{o}}_k\varvec{q}, v_h)_{\mathcal {T}_h} -\langle \varvec{\varPi }^{\text{o}}_k\varvec{q}\cdot \varvec{n},\widehat{v}_h \rangle _{\partial {\mathcal {T}_h}}&=(\nabla \cdot \varvec{\varPi }^{\text{o}}_k\varvec{q}, v_h^\star )_{\mathcal {T}_h} -\langle \varvec{\varPi }^{\text{o}}_k\varvec{q}\cdot \varvec{n},\widehat{v}_h \rangle _{\partial {\mathcal {T}_h}}\\&= (\nabla \cdot \varvec{q}, v^\star _h)_{\mathcal {T}_h} -\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q})\cdot \varvec{n},\widehat{v}_h -v_h^\star \rangle _{\partial {\mathcal {T}_h}}\\&=(-\Delta u, v^\star _h)_{\mathcal {T}_h} -\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q})\cdot \varvec{n},\widehat{v}_h -v_h^\star \rangle _{\partial {\mathcal {T}_h}}. \end{aligned}$$

As a consequence,

$$\begin{aligned}&(\varvec{\varPi }^{\text{o}}_k\varvec{q},\varvec{r}_h)_{\mathcal {T}_h}-(\varPi ^{\text{o}}_{\ell } u,\nabla \cdot \varvec{r}_h)_{\mathcal {T}_h}+\langle \varPi ^{\partial }_{k}u,\varvec{r}_h\cdot \varvec{n} \rangle _{\partial {\mathcal {T}_h}} = 0,\\& (\nabla \cdot \varvec{\varPi }^{\text{o}}_k\varvec{q}, v_h)_{\mathcal {T}_h}-\langle \varvec{\varPi }^{\text{o}}_k\varvec{q}\cdot \varvec{n},\widehat{v}_h \rangle _{\partial {\mathcal {T}_h}} +\langle h^{-1}( \varPi ^{\partial }_k \varPi _{k+1}^\star u -\varPi ^{\partial }_{k}u),\varPi ^{\partial }_kv_h^\star -\widehat{v}_h\rangle _{\partial {\mathcal {T}_h}}\\& =(-\Delta u,v_h^\star )_{\mathcal {T}_h} +E_h(\varvec{q},u;v_h,\widehat{v}_h). \end{aligned}$$

The wanted equations can be now obtained by subtracting these equations from the equations defining the HDG elliptic approximation (7). This completes the proof.

1.2 Step 2: Estimate for \(\varepsilon _h^q\) by an energy argument

Lemma B2

We have

$$\begin{aligned}&\Vert \nabla \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h} +\Vert \varepsilon _h^{\varvec{q}}\Vert _{\mathcal {T}_h} +\Vert h^{-1/2}(\varPi ^{\partial }_k\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}})\Vert _{\partial \mathcal {T}_h}\\& \leqslant C\left( h\Vert (\varPi _{\ell }^{{\text{o}}}-\mathbb {I})(-\Delta u)\Vert _{\mathcal {T}_h} +h^{1/2}\Vert \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q}\Vert _{\partial \mathcal {T}_h}+ \Vert h^{-1/2}(\varPi _{k+1}^\star u -u)\Vert _{\partial {\mathcal {T}_h}} \right) . \end{aligned}$$

This result implies the estimate for the approximate flux in Theorem 2. To prove this lemma, we need the following auxiliary result.

Lemma B3

We have

$$\begin{aligned} \Vert \varepsilon _h^{\varvec{q}}\Vert _{\mathcal {T}_h}&\leqslant C\left( \Vert \nabla \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h} +\Vert h^{-1/2}(\varPi _{k}^{\partial }\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}})\Vert _{\partial \mathcal {T}_h}\right) , \end{aligned}$$
(B1a)
$$\begin{aligned} \Vert \nabla \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h}&\leqslant \Vert \varepsilon _h^{\varvec{q}}\Vert _{\mathcal {T}_h} +\Vert h^{-1/2}(\varPi _{k}^{\partial }\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}})\Vert _{\partial \mathcal {T}_h} . \end{aligned}$$
(B1b)

Proof

Using the first equation of Lemma B1, the definition of \(\mathfrak {p}_h^{k+1}\) in (4), and \(\nabla \cdot \varvec{r}_h\in W_h\), we have

$$\begin{aligned} (\varepsilon _h^{\varvec{q}},\varvec{r}_h)_{\mathcal {T}_h}-(\varepsilon _h^{u^\star },\nabla \cdot \varvec{r}_h)_{\mathcal {T}_h}+\langle \varepsilon _h^{\widehat{u}},\varvec{r}_h\cdot \varvec{n} \rangle _{\partial {\mathcal {T}_h}} = 0. \end{aligned}$$

Integration by parts gives

$$\begin{aligned} (\varepsilon _h^{\varvec{q}},\varvec{r}_h)_{\mathcal {T}_h}+(\nabla \varepsilon _h^{u^\star }, \varvec{r}_h)_{\mathcal {T}_h}+\langle \varepsilon _h^{\widehat{u}}-\varPi _{k}^{\partial }\varepsilon _h^{u^\star },\varvec{r}_h\cdot \varvec{n} \rangle _{\partial {\mathcal {T}_h}} = 0. \end{aligned}$$

Since \(\nabla \varepsilon _h^{u^*}\in \varvec{V}_h\), by taking first \(\varvec{r}_h:=\varepsilon _h^{\varvec{q}}\) and then \(\varvec{r}_h:=\nabla \varepsilon _h^{u^*}\), one gets

$$\begin{aligned} \Vert \varepsilon _h^{\varvec{q}}\Vert _{\mathcal {T}_h}&\leqslant C\left( \Vert \nabla \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h} +\Vert h^{-1/2}(\varPi _{k}^{\partial }\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}})\Vert _{\partial \mathcal {T}_h}\right) ,\\ \Vert \nabla \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h}&\leqslant C\left( \Vert \varepsilon _h^{\varvec{q}}\Vert _{\mathcal {T}_h} +\Vert h^{-1/2}(\varPi _{k}^{\partial }\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}})\Vert _{\partial \mathcal {T}_h}\right) , \end{aligned}$$

respectively. This completes the proof.

We can now prove Lemma B2.

Proof

We take \((\varvec{r}_h,v_h,\widehat{v}_h):=(\varepsilon _h^{\varvec{q}},\varepsilon _h^{u},\varepsilon _h^{\widehat{u}})\) in the error equations of Lemma B1, and add them to get

$$\begin{aligned} \Vert \varepsilon _h^{\varvec{q}}\Vert ^2_{\mathcal {T}_h}+\Vert h^{-1/2}( \varPi ^{\partial }_k \varepsilon _h^{u^\star } -\varepsilon _h^{\widehat{u}})\Vert ^2_{\partial {\mathcal {T}_h}} = R_1+R_2+R_3, \end{aligned}$$

where

$$\begin{aligned} R_1&:= ((\mathbb {I}-\varPi _{\ell }^{\text{o}})(-\Delta u), (\mathbb {I}-\varPi _{\ell }^{\text{o}})\varepsilon _h^{u^\star })_{\mathcal {T}_{h}},\\ R_2&:=-\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q})\cdot \varvec{n},\varepsilon ^{\widehat{u}}_h-\varepsilon _h^{u^\star } \rangle _{\partial {\mathcal {T}_h}}\\ R_3&:=\langle h^{-1}( \varPi _{k+1}^\star u -u),\varPi ^{\partial }_k\varepsilon _h^{u^\star } -\varepsilon ^{\widehat{u}}_h\rangle _{\partial \mathcal {T}_h}. \end{aligned}$$

Since

$$\begin{aligned} |R_1|&\leqslant Ch\Vert (\mathbb {I}-\varPi _{\ell }^{{\text{o}}})(-\Delta u)\Vert _{\mathcal {T}_h}\Vert \nabla \varepsilon _h^{u^\star } \Vert _{\mathcal {T}_h}, \\ |R_2|&\leqslant Ch^{1/2}\Vert \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q}\Vert _{\partial \mathcal {T}_h} \left( \Vert \nabla \varepsilon _h^{u^\star } \Vert _{\mathcal {T}_h}+\Vert h^{-1/2}( \varPi ^{\partial }_k \varepsilon _h^{u^\star } -\varepsilon _h^{\widehat{u}})\Vert _{\partial {\mathcal {T}_h}} \right) ,\\ |R_3|&\leqslant \Vert h^{-1/2}(\varPi _{k+1}^\star u -u)\Vert _{\partial {\mathcal {T}_h}}\Vert h^{-1/2}( \varPi ^{\partial }_k \varepsilon _h^{u^\star } -\varepsilon _h^{\widehat{u}})\Vert _{\partial {\mathcal {T}_h}}, \end{aligned}$$

using the last two estimates of Lemma B3 and simple algebraic manipulations, we get the desired result.

1.3 Step 3: Estimate for \(\varepsilon _h^{u^\star }\) by a duality argument

Lemma B4

Assume that the elliptic regularity inequality (9a) holds. Then, we have

$$\begin{aligned} {\Vert \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h}}&\leqslant C h^{1+\min \{\ell ,1\}}\Vert (\mathbb {I}- \varPi _{\ell }^{\text{o}})(-\Delta u)\Vert _{\mathcal {T}_h}\\&\quad +C(h^{3/2}\Vert \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q}\Vert _{\partial \mathcal {T}_h}+ h\Vert h^{-1/2}(\varPi _{k+1}^\star u -u)\Vert _{\partial {\mathcal {T}_h}}). \end{aligned}$$

Proof

Setting \(g:=\varepsilon _h^{u^\star }\) in the dual problem, and proceeding as in the proof of Lemma B1, we get

$$\begin{aligned}&(\varvec{\varPi }^{\text{o}}_k\varvec{\varPhi },\varvec{r}_h)_{\mathcal {T}_h}-(\varPi ^{\text{o}}_{\ell } \varPsi ,\nabla \cdot \varvec{r}_h)_{\mathcal {T}_h}+\langle \varPi ^{\partial }_{k}\varPsi ,\varvec{r}_h\cdot \varvec{n} \rangle _{\partial {\mathcal {T}_h}} = 0, \end{aligned}$$
(B2a)
$$\begin{aligned}&\quad (\nabla \cdot \varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }, v_h)_{\mathcal {T}_h} -\langle \varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }\cdot \varvec{n},\widehat{v}_h \rangle _{\partial {\mathcal {T}_h}} \nonumber \\&\quad +\langle h^{-1}( \varPi ^{\partial }_k \varPi _{k+1}^\star \varPsi -\varPi ^{\partial }_{k}\varPsi ),\varPi ^{\partial }_kv_h^\star -\widehat{v}_h\rangle _{\partial {\mathcal {T}_h}} =(\varepsilon _h^{u^\star },v^\star _h)_{\mathcal {T}_h}+E_h(\varvec{\varPhi },\varPsi ;v_h,\widehat{v}_h), \end{aligned}$$
(B2b)

where

$$\begin{aligned} E_h(\varvec{\varPhi },\varPsi ;v_h,\widehat{v}_h)=-\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }-\varvec{\varPhi })\cdot \varvec{n},\widehat{v}_h-v_h^\star \rangle _{\partial {\mathcal {T}_h}}+\langle h^{-1}( \varPi _{k+1}^\star {\varPsi } -\varPsi ),\varPi ^{\partial }_kv_h^\star -\widehat{v}_h\rangle _{\partial {\mathcal {T}_h}}. \end{aligned}$$

Then taking \((v_h,\widehat{v}_h):=(\varepsilon _h^u,\varepsilon _h^{\widehat{u}})\) in (B2b), we get

$$\begin{aligned} \Vert \varepsilon _h^{u^\star }\Vert ^2_{\mathcal {T}_h}&=(\nabla \cdot \varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }, \varepsilon _h^u)_{\mathcal {T}_h} -\langle \varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }\cdot \varvec{n},\varepsilon _h^{\widehat{u}} \rangle _{\partial {\mathcal {T}_h}}\\&\quad +\langle h^{-1}( \varPi ^{\partial }_k \varPi _{k+1}^\star \varPsi -\varPi ^{\partial }_{k}\varPsi ),\varPi ^{\partial }_kv_h^\star -\widehat{v}_h\rangle _{\partial {\mathcal {T}_h}}{-E_h(\varvec{\varPhi },\varPsi ;\varepsilon ^{u}_h,\varepsilon ^{\widehat{u}}_h)} \\&= (\varepsilon _h^{\varvec{q}},\varvec{\varPi }^{\text{o}}_k\varvec{\varPhi })_{\mathcal {T}_h} + \langle h^{-1}( \varPi ^{\partial }_k \varPi _{k+1}^\star \varPsi -\varPi ^{\partial }_{k}\varPsi ),\varPi ^{\partial }_k\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}}\rangle _{\partial {\mathcal {T}_h}}{-E_h(\varvec{\varPhi },\varPsi ;\varepsilon ^{u}_h,\varepsilon ^{\widehat{u}}_h)} \end{aligned}$$

by the first equation of Lemma B1 with \( \varvec{r}_h:=\varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }\). By (B2a) with \(\varvec{r}_h:=\varepsilon _h^{\varvec{q}}\), we obtain

$$\begin{aligned} \Vert \varepsilon _h^{u^\star }\Vert ^2_{\mathcal {T}_h}&= (\varPi ^{\text{o}}_{\ell } \varPsi ,\nabla \cdot \varepsilon _h^{\varvec{q}})_{\mathcal {T}_h}\ -\langle \varPi ^{\partial }_{k}\varPsi ,\varepsilon _h^{\varvec{q}}\cdot \varvec{n} \rangle _{\partial {\mathcal {T}_h}} \\&\quad +\langle h^{-1}( \varPi ^{\partial }_k \varPi _{k+1}^\star \varPsi -\varPi ^{\partial }_{k}\varPsi ),\varPi ^{\partial }_k\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}}\rangle _{\partial {\mathcal {T}_h}}\\&\quad -E_h(\varvec{\varPhi },\varPsi ; \, \varepsilon ^{u}_h,\varepsilon ^{\widehat{u}}_h)\\&=({(\mathbb {I}-\varPi _{\ell }^{\text{o}})(-\Delta u)},\varPi _{k+1}^\star \varPsi -\varPi _{\ell }^{\text{o}}\varPsi )\\&\quad + E_h(\varvec{q},u; \, \varPi ^{{\text{o}}}_{\ell }\varPsi ,\varPi ^{\partial }_{k}\varPsi )-E_h(\varvec{\varPhi },\varPsi ; \, \varepsilon ^{u}_h,\varepsilon ^{\widehat{u}}_h) \end{aligned}$$

by the second equation of Lemma B1 with \((v_h,\widehat{v}_h):=(\varPi ^{{\text{o}}}_{\ell }\varPsi ,\varPi ^{\partial }_{k}\varPsi )\). Inserting the definitions of the \(E_h\)-terms, we finally get

$$\begin{aligned} \Vert \varepsilon _h^{u^\star }\Vert ^2_{\mathcal {T}_h}&= ((\mathbb {I}-\varPi _{\ell }^{\text{o}})(-\Delta u),\varPi _{k+1}^\star \varPsi -\varPi _{\ell }^{\text{o}}\varPsi )\\&\quad -\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q})\cdot \varvec{n},\varPi ^{\partial }_{k}\varPsi -\varPi ^\star _{k+1}\varPsi \rangle _{\partial {\mathcal {T}_h}} \\&\quad +\langle h^{-1}( \varPi _{k+1}^\star u -u),\varPi ^{\partial }_k\varPi ^\star _{k+1}\varPsi -\varPi ^{\partial }_{k}\varPsi \rangle _{\partial {\mathcal {T}_h}}\\&\quad +\langle ( \varvec{\varPi }^{\text{o}}_k\varvec{\varPhi }-\varvec{\varPhi })\cdot \varvec{n},\varepsilon _h^{\widehat{u}}-\varepsilon _h^{u^\star }\rangle _{\partial {\mathcal {T}_h}}\\&\quad -\langle h^{-1}( \varPi _{k+1}^\star {\varPsi } -\varPsi ),\varPi ^{\partial }_k\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}}\rangle _{\partial {\mathcal {T}_h}}, \end{aligned}$$

which leads to

$$\begin{aligned} \Vert \varepsilon _h^{u^\star }\Vert ^2_{\mathcal {T}_h}&\leqslant C h^{\min \{\ell ,1\}+1}\Vert (\mathbb {I}- \varPi _{\ell }^{\text{o}})(-\Delta u)\Vert _{\mathcal {T}_h}|\varPsi |_{\min \{\ell ,1\}+1} \\&\quad +Ch^{3/2}\Vert \varvec{\varPi }^{\text{o}}_k\varvec{q}-\varvec{q}\Vert _{\partial \mathcal {T}_h} |\varPsi |_2 +Ch\Vert h^{-1/2}(\varPi _{k+1}^\star u -u)\Vert _{\partial {\mathcal {T}_h}}{|\varPsi |_2}\\&\quad +Ch\left( \Vert \nabla \varepsilon _h^{u^\star }\Vert _{\mathcal {T}_h} +\Vert h^{-1/2}(\varPi ^{\partial }_k\varepsilon _h^{u^\star }-\varepsilon _h^{\widehat{u}})\Vert _{\partial \mathcal {T}_h} \right) ( |\varvec{\varPhi }|_1+|\varPsi |_2). \end{aligned}$$

Using the elliptic regularity inequality (9a) and the first inequality of Lemma B2, we finally obtain the wanted result.

1.4 Step 4: Estimate for \(u_h\)

Lemma B5

We have that \(\Vert \varepsilon _h^{u} \Vert _{\mathcal {T}_h} \leqslant \Vert \varepsilon _h^{u^\star } \Vert _{\mathcal {T}_h}. \)

Combining this result and the one in the previous step gives the estimate in the approximation for u in Theorem 2. To complete the proof of Theorem 2, it only remains to prove the above lemma.

Proof

Since \(u_h^\star =\mathfrak {p}_h^{k+1}( u_h,\widehat{u}_h)\), \(\varPi _{k+1}^\star u=\mathfrak {p}_h^{k+1}(\varPi ^{{\text{o}}}_{\ell } u,\varPi ^{\partial }_k u)\), and the operator \(\mathfrak {p}_h^{k+1}\) is linear, we have that \( \varepsilon _h^{u^\star } =\mathfrak {p}_h^{k+1}( \varepsilon _h^u,\varepsilon _h^{\widehat{u}})\). Proceeding as in the proof of Proposition 1, it can be shown that \( \varepsilon _h^u \in [\mathcal {P}_{\ell }^{k+1}(K)]^{\perp }\). Then, by equation (4b), the wanted inequality follows. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Cockburn, B., Singler, J.R. et al. Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations II: HHO-Inspired Methods. Commun. Appl. Math. Comput. 4, 477–499 (2022). https://doi.org/10.1007/s42967-021-00128-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00128-3

Keywords

Mathematics Subject Classification

Navigation