Skip to main content
Log in

Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We present high order accurate numerical methods for the wave equation that combines efficient Hermite methods with geometrically flexible discontinuous Galerkin methods by using overset grids. Near boundaries we use thin boundary fitted curvilinear grids and in the volume we use Cartesian grids so that the computational complexity of the solvers approaches a structured Cartesian Hermite method. Unlike many other overset methods we do not need to add artificial dissipation but we find that the built-in dissipation of the Hermite and discontinuous Galerkin methods is sufficient to maintain the stability. By numerical experiments we demonstrate the stability, accuracy, efficiency, and the applicability of the methods to forward and inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Angel, J.B., Banks, J.W., Henshaw, W.D.: High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form. J. Comput. Phys. 352, 534–567 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appelö, D., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.: Numerical methods for solid mechanics on overlapping grids: linear elasticity. J. Comput. Phys. 231(18), 6012–6050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Appelö, D., Hagstrom, T.: A new discontinuous Galerkin formulation for wave equations in second order form. SIAM J. Numer. Anal. 53(6), 2705–2726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Appelö, D., Hagstrom, T.: An energy-based discontinuous Galerkin discretization of the elastic wave equation in second order form. Comput. Methods Appl. Mech. Eng. 338, 362–391 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Appelö, D., Hagstrom, T., Vargas, A.: Hermite methods for the scalar wave equation. SIAM J. Sci. Comput. 40(6), A3902–A3927 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Appelö, D., Petersson, N.: A fourth-order accurate embedded boundary method for the wave equation. SIAM J. Sci. Comput. 34(6), A2982–A3008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Appelö, D., Wang, S.: An energy-based discontinuous Galerkin method for coupled elasto-acoustic wave equations in second-order form. Int. J. Numer. Methods Eng. 119(7), 618–638 (2019)

    Article  MathSciNet  Google Scholar 

  8. Banks, J.W., Hagstrom, T.: On Galerkin difference methods. J. Comput. Phys. 313, 310–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Banks, J.W., Henshaw, W.D.: Upwind schemes for the wave equation in second-order form. J. Comput. Phys. 231(17), 5854–5889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Björck, Å., Pereyra, V.: Solution of Vandermonde systems of equations. Math. Comput. 24(112), 893–903 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruno, O.P., Lyon, M.: High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements. J. Comput. Phys. 229(6), 2009–2033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chesshire, G., Henshaw, W.D.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chou, C.S., Shu, C.W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47(5), 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing, vol. 1. Society for Industrial and Applied Mathematics, PA, USA (2008)

  18. Goodrich, J., Hagstrom, T., Lorenz, J.: Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75(254), 595–630 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hagstrom, T., Appelö, D.: Solving PDEs with Hermite interpolation. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, pp. 31–49. Springer, Berlin (2015)

    Chapter  Google Scholar 

  21. Hagstrom, T., Hagstrom, G.: Grid stabilization of high-order one-sided differencing II: second-order wave equations. J. Comput. Phys. 231(23), 7907–7931 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henshaw, W.D.: Ogen: An Overlapping Grid Generator for Overture. Research Report UCRL-MA-132237, Lawrence Livermore National Laboratory (1998)

  23. Henshaw, W.D.: A high-order accurate parallel solver for Maxwell’s equations on overlapping grids. SIAM J. Sci. Comput. 28(5), 1730–1765 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J.R., Greengard, L.: High order marching schemes for the wave equation in complex geometry. J. Comput. Phys. 198(1), 295–309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lyon, M., Bruno, O.P.: High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. J. Comput. Phys. 229(9), 3358–3381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Petersson, N.A., Sjögreen, B.: High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography. J. Sci. Comput. 74(1), 290–323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sticko, S., Kreiss, G.: Higher order cut finite elements for the wave equation. arXiv:1608.03107 (2016)

  31. Sticko, S., Kreiss, G.: A stabilized Nitsche cut element method for the wave equation. Comput. Methods Appl. Mech. Eng. 309, 364–387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, vol. 88. SIAM, Philapedia (2004)

    MATH  Google Scholar 

  33. Virta, K., Mattsson, K.: Acoustic wave propagation in complicated geometries and heterogeneous media. J. Sci. Comput. 61(1), 90–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wandzura, S.: Stable, high-order discretization for evolution of the wave equation in 2 + 1 dimensions. J. Comput. Phys. 199(2), 763–775 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, S., Virta, K., Kreiss, G.: High order finite difference methods for the wave equation with non-conforming grid interfaces. J. Sci. Comput. 68(3), 1002–1028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Warburton, T., Hagstrom, T.: Taming the CFL number for discontinuous Galerkin methods on structured meshes. SIAM J. Numer. Anal. 46(6), 3151–3180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wilcox, L., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under Grant NSF-1913076. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Beznosov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beznosov, O., Appelö, D. Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation. Commun. Appl. Math. Comput. 3, 391–418 (2021). https://doi.org/10.1007/s42967-020-00075-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00075-5

Keywords

Mathematics Subject Classification

Navigation