Skip to main content

Advertisement

Log in

Modification strategies of Li7La3Zr2O12 ceramic electrolyte for high-performance solid-state batteries

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Enormous research focusing on solid-state electrolyte promotes the development of solid-state batteries. Compared to lithium-ion batteries using liquid electrolyte, the solid-state batteries feature the high energy density and non-flammability, which accelerates the revolution in portable electronics and transportation. Garnet-type Li7La3Zr2O12 (LLZO) solid-state electrolyte is considered as the promising solid-state electrolyte due to high ionic conductivity, Li transference number and shear modulus. However, surface contaminant and poor contact with lithium inhibit its practical application in lithium metal batteries. The review provides a brief introduction about structure and properties of LLZO. Then, we conclude the modification strategies for increasing ionic conductivity, enhancing interfacial contact and inhibiting lithium dendrite. At last, the challenge and perspectives are discussed for development of LLZO in solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [16] Copyright 2012 American Physical Society

Fig. 2

a, b Reproduced with permission from Ref. [27] Copyright 2015 ACS. c Schematic model which illustrates the Li2CO3 formation process. Reproduced with permission from Ref. [26] Copyright 2017 The American Ceramic Society

Fig. 3

Reproduced with permission from Ref. [32] Copyright 2020 Wiley

Fig. 4

Reproduced with permission from Ref. [33] Copyright 2020 Springer Nature

Fig. 5

Reproduced with permission from Ref. [44] Copyright 2016 ACS. The mechanism of MCI-coated LLZO pellet for suppressing lithium dendrites: b LLZO/Li and c LLZO/T–LLZO/Li. Reproduced with permission from Ref. [45] Copyright 2020 Wiley

Fig. 6

Reproduced with permission from Ref. [62]. Copyright 2017 Wiley. b Illustration for synthesis of Li3N-coated LLZTO, and the SEM images of Li2CO3-coated LLZTO and Li3N-coated LLZTO. Reproduced with permission from Ref. [63]. Copyright 2018 ACS. c The mechanism of Li3OCl for better contact between Li metal and LLZTO. Reproduced with permission from Ref. [64]. Copyright 2018 Elsevier. d Schematic illustration for poor contact between LLZTO and Li and the formation of LiySn and Li3N at the interface to realize intimate contact. Right: magnified area. Reproduced with permission from Ref. [65]. Copyright 2020 Wiley

Fig. 7

Reproduced with permission from Ref. [66] Copyright 2021 Springer Nature

Fig. 8

Reproduced with permission from Ref. [67] Copyright 2020 ACS. b Illustration for poor contact between SSE and Li metal and stable contact between Li–Mg alloy and SSE. Reproduced with permission from Ref. [61] Copyright 2018 Wiley. c Mechanism of the formation of Li3N interlayer by reaction between molten Li and g-C3N4. Reproduced with permission from Ref. [68] Copyright 2019 Wiley

Fig. 9

Reproduced with permission from Ref. [70] Copyright 2016 ACS. b Schematic illustrations for microcrack caused within LBO layer during batteries cycling and the SEM images of the microcrack. Reproduced with permission from Ref. [73] Copyright 2019 ACS. c Schematics of the Li2.3C0.7B0.3O3 as solder to realize intact contact between LCO powder and LLZO powder, and between cathode layer and LLZO pellet and cycling performance of Li/LLZO/LCO batteries at 0.05 C at room temperature. Reproduced with permission from Ref. [69] Copyright 2018 Elsevier

Fig. 10

a, b Reproduced with permission from Ref. [80] Copyright 2020 RSC. c Schematic of the consolidating mechanism. d Cycling performance of the NCM811/LFP cathode for more than 100 cycles at 0.2  C by LLZTO/LBO electrolyte. c, d Reproduced with permission from Ref. [81] Copyright 2019 RSC

Fig. 11

a, b Reproduced with permission from Ref. [89] Copyright 2020 Wiley. c Schematics of fabrication procedures of the presented LLZO thin films. d Illustration of the migration barrier and Li vacancy concentration at the conventional grain boundary and the grain boundary with amorphous domains. c, d Reproduced with permission from Ref. [90] Copyright 2020 Springer Nature

Fig. 12

a, b Reproduced with permission from Ref. [95] Copyright 2021 Wiley. c Photo showing the flexibility of the hybrid electrolyte, which is associated with the fiber network and conformal structure between ceramic fibers and a polymer electrolyte. Reproduced with permission from Ref. [97] Copyright 2018 Wiley

Similar content being viewed by others

Change history

References

  1. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019;18:1278.

    Article  CAS  Google Scholar 

  2. Ye T, Li LH, Zhang Y. Recent progress in solid electrolytes for energy storage devices. Adv Funct Mater. 2020;30(29):2000077.

    Article  CAS  Google Scholar 

  3. Wu C, Huang HF, Lu WY, Wei ZX, Ni XY, Sun F, Qing P, Liu ZJ, Ma JM, Wei WF, Chen LB, Yan CL, Mai LQ. Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv Sci. 2020;7:1902643.

    Article  CAS  Google Scholar 

  4. Duan J, Huang LQ, Wang TR, Huang YM, Fu HY, Wu WY, Luo W, Huang YH. Shaping the contact between Li metal anode and solid-state electrolytes. Adv Funct Mater. 2020;30:1908701.

    Article  CAS  Google Scholar 

  5. Banerjee A, Wang XF, Fang CC, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.

    Article  CAS  Google Scholar 

  6. Zheng Y, Yao YZ, Ou JH, Li M, Luo D, Dou HZ, Li ZQ, Amine K, Yu AP, Chen ZW. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev. 2020;49(23):8790.

    Article  CAS  Google Scholar 

  7. Li ZY, Li AJ, Zhang HR, Lin RQ, Jin TW, Cheng Q, Xiao XH, Lee WK, Ge MY, Zhang HJ, Zangiabadi A, Waluyo I, Hunt A, Zhai HW, Borovilas JJ, Wang PY, Yang XQ, Chuan XY, Yang Y. Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy. 2020;72:104655.

    Article  CAS  Google Scholar 

  8. Wang ZX, Huang BY, Huang H, Chen LQ, Xue RJ, Wang FS. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infared spectroscopy. Electrochim Acta. 1996;41:1443.

    Article  CAS  Google Scholar 

  9. Liu WY, Yi C, Li LP, Liu SL, Gui QY, Ba DL, Li YY, Peng DL, Liu JP. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew Chem Int Ed. 2021;60(23):12931.

    Article  CAS  Google Scholar 

  10. Zhang X, Wang S, Xue CJ, Xin CZ, Lin YH, Shen Y, Li LL, Nan CW. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv Mater. 2019;31(11):1806082.

    Article  CAS  Google Scholar 

  11. Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem Rev. 2020;120(14):6820.

    Article  CAS  Google Scholar 

  12. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2:16103.

    Article  CAS  Google Scholar 

  13. Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ Sci. 2020;13(5):1429.

    Article  CAS  Google Scholar 

  14. Dai J, Chen Q, Glossmann T, Lai W. Comparison of interatomic potential models on the molecular dynamics simulation of fast-ion conductors: a case study of a Li garnet oxide Li7La3Zr2O12. Comput Mater Sci. 2019;162:333.

    Article  CAS  Google Scholar 

  15. Meesala Y, Jena A, Chang H, Liu RS. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2017;2:2734.

    Article  CAS  Google Scholar 

  16. Xu M, Park MS, Lee JM, Kim TY, Park YS, Ma E. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M = Te, Nb, Zr). Phys Rev B. 2012;85:052301.

    Article  CAS  Google Scholar 

  17. Kasper HM. A new series of rare earth garnets Ln3+3M2Li+3O12 (M = Te, W). Inorg Chem. 1969;8(4):1000.

    Article  CAS  Google Scholar 

  18. Thangadurai V, Kaack H, Weppner WJF. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Chem Soc. 2003;86(3):437.

    Google Scholar 

  19. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778.

    Article  CAS  Google Scholar 

  20. Murugan R, Thangadurai V, Weppner W. Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes. J Electrochem Soc. 2008;155:A90.

    Article  CAS  Google Scholar 

  21. Wang C, Fu K, Kammampata SP, Mcowen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo Y, Thangadurai V, Hu L. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev. 2020;120(10):4257.

    Article  CAS  Google Scholar 

  22. Posch P, Lunghammer S, Berendts S, Ganschow S, Redhammer GJ, Wilkening A, Lerch M, Gadermaier B, Rettenwander D, Wilkening HMR. Ion dynamics in Al-stabilized Li7La3Zr2O12 single crystals – macroscopic transport and the elementary steps of ion hopping. Energy Storage Mater. 2020;24:220.

    Article  Google Scholar 

  23. Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer HM, Nanda J, Chi M, Siegel DJ, Sakamoto J. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J Mater Chem A. 2017;5:13475.

    Article  CAS  Google Scholar 

  24. Krauskopf T, Mogwitz B, Hartmann H, Singh DK, Zeier WG, Janek J. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. Adv Energy Mater. 2020;10:2000945.

    Article  CAS  Google Scholar 

  25. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4:187.

    Article  CAS  Google Scholar 

  26. Xia W, Xu B, Duan H, Tang X, Guo Y, Kang H, Li H, Liu H. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J Am Ceram Soc. 2017;100:2832.

    Article  CAS  Google Scholar 

  27. Cheng L, Wu CH, Jarry A, Chen W, Ye Y, Zhu J, Kostecki R, Persson K, Guo J, Salmeron M, Chen G, Doeff M. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces. 2015;7:17649.

    Article  CAS  Google Scholar 

  28. Galven C, Dittmer J, Suard E, Le Berre F, Crosnier-Lopez MP. Instability of lithium garnets against moisture structural characterization and dynamics of Li7xHxLa3Sn2O12 and Li5xHxLa3Nb2O12. Chem Mater. 2012;24:3335.

    Article  CAS  Google Scholar 

  29. Truong L, Thangadurai V. First total H+/Li+ ion exchange in garnet-type Li5La3Nb2O12 using organic acids and studies on the effect of Li stuffing. Inorg Chem. 2012;51(3):1222.

    Article  CAS  Google Scholar 

  30. Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys. 2014;16:18294.

    Article  CAS  Google Scholar 

  31. Besli MM, Usubelli C, Metzger M, Pande V, Harry K, Nordlund D, Sainio S, Christensen J, Doeff MM, Kuppan S. Effect of liquid electrolyte soaking on the interfacial resistance of Li7La3Zr2O12 for all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2020;12:20605.

    Article  CAS  Google Scholar 

  32. Duan H, Chen WP, Fan M, Wang WP, Yu L, Tan SJ, Chen X, Zhang Q, Xin S, Wan LJ, Guo YG. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew Chem Int Ed. 2020;59:12069.

    Article  CAS  Google Scholar 

  33. Yang YN, Li YX, Li YQ, Zhang T. On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes. Nat Commun. 2020;11:5519.

    Article  CAS  Google Scholar 

  34. Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater. 2016;28:197.

    Article  CAS  Google Scholar 

  35. Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 2012;206:28.

    Article  CAS  Google Scholar 

  36. Im C, Park D, Kim H, Lee J. Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries. J Energy Chem. 2018;27:1501.

    Article  Google Scholar 

  37. Yang SH, Kim MY, Kim DH, Jung HY, Ryu HM, Han JH, Lee MS, Kim HS. Ionic conductivity of Ga-doped LLZO prepared using Couette-Taylor reactor for all-solid lithium batteries. J Ind Eng Chem. 2017;56:422.

    Article  CAS  Google Scholar 

  38. Chen C, Sun Y, He L, Kotobuki M, Hanc E, Chen Y, Zeng K, Lu L. Microstructural and electrochemical properties of Al- and Ga-doped Li7La3Zr2O12 garnet solid electrolytes. ACS Appl Energy Mater. 2020;3:4708.

    Article  CAS  Google Scholar 

  39. Rangasamy E, Wolfenstine J, Allen J, Sakamoto J. The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. J Power Sources. 2013;230:261.

    Article  CAS  Google Scholar 

  40. Dumon A, Huang M, Shen Y, Nan CW. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion. 2013;243:36.

    Article  CAS  Google Scholar 

  41. Chen X, Cao T, Xue M, Lv H, Li B, Zhang C. Improved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method. Solid State Ion. 2018;314:92.

    Article  CAS  Google Scholar 

  42. Li Y, Wang Z, Cao Y, Du F, Chen C, Cui Z, Guo X. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim Acta. 2015;180:37.

    Article  CAS  Google Scholar 

  43. Gao J, Guo X, Li Y, Ma Z, Guo X, Li H, Zhu Y, Zhou W. The Ab initio calculations on the areal specific resistance of Li-metal/Li7La3Zr2O12 interphase. Adv Theory Simul. 2019;2:1900028.

    Article  CAS  Google Scholar 

  44. Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney NJ, Chi M. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 2016;16:7030.

    Article  CAS  Google Scholar 

  45. Gao J, Zhu J, Li X, Li J, Guo X, Li H, Zhou W. Rational design of mixed electronic-ionic conducting Ti-doping Li7La3Zr2O12 for lithium dendrites suppression. Adv Funct Mater. 2020;31:2001918.

    Article  CAS  Google Scholar 

  46. Yeandel SR, Chapman BJ, Slater PR, Goddard P. Structure and lithium-ion dynamics in Fluoride-doped cubic Li7La3Zr2O12 (LLZO) garnet for Li solid-state battery applications. J Phys Chem C. 2018;122:27811.

    Article  CAS  Google Scholar 

  47. Liu C, Wen ZY, Rui K. High ion conductivity in garnet-type F-doped Li7La3Zr2O12. J Inorg Mater. 2015;30(9):995.

    Article  CAS  Google Scholar 

  48. Yang T, Li Y, Wu W, Cao Z, He W, Gao Y, Liu J, Li G. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceram Int. 2018;44:1538.

    Article  CAS  Google Scholar 

  49. Shen L, Wang L, Wang Z, Jin C, Peng L, Pan X, Sun J, Yang R. Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte. Solid State Ion. 2019;339:114992.

    Article  CAS  Google Scholar 

  50. Wang C, Lin PP, Gong Y, Liu ZG, Lin TS, He P. Co-doping effects of Ba2+ and Ta5+ on the microstructure and ionic conductivity of garnet-type solid state electrolytes. J Alloys Compd. 2021;854:157143.

    Article  CAS  Google Scholar 

  51. Liu X, Gao M, Liu Y, Xiong L, Chen J. Improving the room temperature ionic conductivity of Al-Li7La3Zr2O12 ceramics by Ba and Y or Ba and W co-doping. Ceram Int. 2019;45:13488.

    Article  CAS  Google Scholar 

  52. Amardeep A, Kobi S, Mukhopadhyay A. Mg-doping towards enhancing the composition-phase-structural stability of Li-La-zirconate based cubic garnet upon exposure to air. Scr Mater. 2019;162:214.

    Article  CAS  Google Scholar 

  53. Murugan R, Ramakumar S, Janani N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem Commum. 2011;13:1373.

    Article  CAS  Google Scholar 

  54. Song S, Chen B, Ruan Y, Sun J, Yu L, Wang Y, Thokchom J. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-ion batteries. Electrochim Acta. 2018;270:501.

    Article  CAS  Google Scholar 

  55. Liu X, Li Y, Yang T, Cao Z, He W, Gao Y, Liu J, Li G, Li Z. High lithium ionic conductivity in the garnet-type oxide Li7−2x La3Zr2−xMox O12 (x = 0–0.3) ceramics by sol-gel method. J Am Ceram Soc. 2017;100:1527.

    Article  CAS  Google Scholar 

  56. Xiang X, Chen F, Yang W, Yang J, Ma X, Chen D, Su K, Shen Q, Zhang L. Dual regulation of Li+ migration of Li64La3Zr14M0.6O12 (M = Sb, Ta, Nb) by bottleneck size and bond length of M−O. J Am Ceram Soc. 2019;103:2483.

    Article  CAS  Google Scholar 

  57. Zeier WG. Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Trans. 2014;43:16133.

    Article  CAS  Google Scholar 

  58. Jalem R, Rushton MJD, Manalastas W, Nakayama M, Kasuga T, Kilner JA, Grimes RW. Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chem Mater. 2015;27:2821.

    Article  CAS  Google Scholar 

  59. Wang C, Xie H, Zhang L, Gong Y, Pastel G, Dai J, Liu B, Wachsman ED, Hu L. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv Energy Mater. 2018;8:1701963.

    Article  CAS  Google Scholar 

  60. Zhou C, Samson AJ, Hofstetter K, Thangadurai V. A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries. Sustain Energy Fuels. 2018;2:2165.

    Article  CAS  Google Scholar 

  61. Yang C, Xie H, Ping W, Fu K, Liu B, Rao J, Dai J, Wang C, Pastel G, Hu L. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater. 2019;31:e1804815.

    Article  CAS  Google Scholar 

  62. Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu KK, Pastel G, Lin CF, Mo Y, Wachsman ED, Hu L. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater. 2017;29:1606042.

    Article  CAS  Google Scholar 

  63. Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough JB. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 2018;18:7414.

    Article  CAS  Google Scholar 

  64. Tian Y, Ding F, Zhong H, Liu C, He YB, Liu J, Liu X, Xu Q. Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 2018;14:49.

    Article  Google Scholar 

  65. Shi K, Wan Z, Yang L, Zhang Y, Huang Y, Su S, Xia H, Jiang K, Shen L, Hu Y, Zhang S, Yu J, Ren F, He YB, Kang F. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew Chem Int Ed Engl. 2020;59:11784.

    Article  CAS  Google Scholar 

  66. Huo H, Gao J, Zhao N, Zhang D, Holmes NG, Li X, Sun Y, Fu J, Li R, Guo X, Sun X. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat Commun. 2021;12:176.

    Article  CAS  Google Scholar 

  67. Zhang Y, Meng J, Chen K, Wu H, Hu J, Li C. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett. 2020;5:1167.

    Article  CAS  Google Scholar 

  68. Huang Y, Chen B, Duan J, Yang F, Wang T, Wang Z, Yang W, Hu C, Luo W, Huang Y. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew Chem Int Ed. 2020;59:3699.

    Article  CAS  Google Scholar 

  69. Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C. Interphase engineering enabled all-ceramic lithium battery. Joule. 2018;2:497.

    Article  CAS  Google Scholar 

  70. Park K, Yu BC, Jung JW, Li Y, Zhou W, Gao H, Son S, Goodenough JB. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem Mater. 2016;28:8051.

    Article  CAS  Google Scholar 

  71. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016;138:9385.

    Article  CAS  Google Scholar 

  72. Liu B, Gong Y, Fu K, Han X, Yao Y, Pastel G, Yang C, Xie H, Wachsman ED, Hu L. Garnet solid electrolyte protected Li-metal batteries. ACS Appl Mater Interfaces. 2017;9(22):18809.

    Article  CAS  Google Scholar 

  73. Wang D, Sun Q, Luo J, Liang J, Sun Y, Li R, Adair K, Zhang L, Yang R, Lu S, Huang H, Sun X. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries. ACS Appl Mater Interfaces. 2019;11:4954.

    Article  CAS  Google Scholar 

  74. Fu K, Gong Y, Hitz GT, Mcowen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci. 2017;10:1568.

    Article  CAS  Google Scholar 

  75. Zhong G, Wang C, Wang R, Ping W, Xu S, Qiao H, Cui M, Wang X, Zhou Y, Kline DJ, Zachariah MR, Hu L. Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface. Energy Storage Mater. 2020;30:385.

    Article  Google Scholar 

  76. Bai L, Xue W, Qin H, Li Y, Li Y, Sun J. A novel dense LiCoO2 microcrystalline buffer layer on a cathode-electrolyte interface for all-solid-state lithium batteries prepared by the magnetron sputtering method. Electrochim Acta. 2019;295:677.

    Article  CAS  Google Scholar 

  77. Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces. 2015;7(3):2073.

    Article  CAS  Google Scholar 

  78. Mo F, Ruan J, Sun S, Lian Z, Yang S, Yue X, Song Y, Zhou YN, Fang F, Sun G, Peng S, Sun D. Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv Energy Mater. 2019;9:1902123.

    Article  CAS  Google Scholar 

  79. Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4:eaat3446.

    Article  CAS  Google Scholar 

  80. Kim JS, Kim H, Badding M, Song Z, Kim K, Kim Y, Yun DJ, Lee D, Chang J, Kim S, Im D, Park S, Kim SH, Heo S. Origin of intergranular Li metal propagation in garnet-based solid electrolyte by direct electronic structure analysis and performance improvement by bandgap engineering. J Mater Chem A. 2020;8(33):16892.

    Article  CAS  Google Scholar 

  81. Xie H, Li C, Kan WH, Avdeev M, Zhu C, Zhao Z, Chu X, Mu D, Wu F. Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries. J Mater Chem A. 2019;7(36):20633.

    Article  CAS  Google Scholar 

  82. Huang X, Lu Y, Song Z, Xiu T, Badding ME, Wen Z. Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO. J Energy Chem. 2019;39:8.

    Article  Google Scholar 

  83. Li HY, Huang B, Huang Z, Wang CA. Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering. Ceram Int. 2019;45(14):18115.

    Article  CAS  Google Scholar 

  84. Shen F, Guo W, Zeng D, Sun Z, Gao J, Li J, Zhao B, He B, Han X. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl Mater Interface. 2020;12:30313.

    Article  CAS  Google Scholar 

  85. Zhang H, An X, Lu Z, Liu L, Cao H, Xu Q, Liu H, Ni Y. A three dimensional interconnected Li7La3Zr2O12 framework composite solid electrolyte utilizing lignosulfonate/ cellulose nanofiber bio-template for high performance lithium ion batteries. J Power Sources. 2020;477:228752.

    Article  CAS  Google Scholar 

  86. Ding J, Xu R, Yan C, Xiao Y, Liang Y, Yuan H, Huang J. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chin Chem Lett. 2020;31(9):2339.

    Article  CAS  Google Scholar 

  87. Xu R, Xiao Y, Zhang R, Cheng XB, Zhao CZ, Zhang XQ, Yan C, Zhang Q, Huang JQ. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv Mater. 2019;31(19):e1808392.

    Article  CAS  Google Scholar 

  88. Zhao Y, Yan J, Cai W, Lai Y, Song J, Yu J, Ding B. Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 2019;23:306.

    Article  Google Scholar 

  89. Zhu J, Li X, Wu C, Gao J, Xu H, Li Y, Guo X, Li H, Zhou W. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew Chem Int Ed Engl. 2021;60(7):3781.

    Article  CAS  Google Scholar 

  90. Zhu Y, Wu S, Pan Y, Zhang X, Yan Z, Xiang Y. Reduced energy barrier for Li+ transport across grain boundaries with amorphous domains in LLZO thin films. Nanoscale Res Lett. 2020;15:153.

    Article  CAS  Google Scholar 

  91. Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang QH, Kang F, He YB. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater. 2019;29(1):1805301.

    Article  CAS  Google Scholar 

  92. Li Y, Zhang W, Dou Q, Wong KW, Ng KM. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J Mater Chem A. 2019;7(8):3391.

    Article  CAS  Google Scholar 

  93. Li Z, Xie HX, Zhang XY, Guo X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J Mater Chem A. 2020;8(7):3892.

    Article  CAS  Google Scholar 

  94. Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. An anion-immobilizd composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci USA. 2017;114:11069.

    Article  CAS  Google Scholar 

  95. He K, Cheng SH, Hu J, Zhang Y, Yang H, Liu Y, Liao W, Chen D, Liao C, Cheng X, Lu Z, He J, Tang J, Li RKY, Liu C. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew Chem Int Ed. 2021;60(21):12116.

    Article  CAS  Google Scholar 

  96. Jiang T, He P, Wang G, Shen Y, Nan CW, Fan LZ. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater. 2020;10:1903376.

    Article  CAS  Google Scholar 

  97. Xie H, Yang C, Fu KK, Yao Y, Jiang F, Hitz E, Liu B, Wang S, Hu L. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv Energy Mater. 2018;8(18):1703474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51672156), Local Innovative Research Teams Project of Guangdong Pearl River Talents Program (Grant No. 2017BT01N111), Shenzhen Technical Plan Project (Grant Nos. JCYJ20170412170706047, JCYJ20170307153806471 and GJHS20170314165324888).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, JS., Guo, SK. & He, YB. Modification strategies of Li7La3Zr2O12 ceramic electrolyte for high-performance solid-state batteries. Tungsten 3, 260–278 (2021). https://doi.org/10.1007/s42864-021-00102-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00102-9

Keywords

Navigation