Skip to main content

Advertisement

Log in

Garnet-type solid-state electrolytes: crystal structure, interfacial challenges and controlling strategies

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

All-solid-state batteries (ASSBs) hold great promise for next-generation energy storage technologies owing to their advantage in different aspects such as energy density, safety, and wide temperature tolerance. However, the use of solid-state electrolytes (SSEs) instead of liquid ones meanwhile brings serious concerns related to the point-to-point contact between SSEs and electrodes, which is known to result in high interface resistance and inhomogeneous distribution of charges during the Li+ plating/stripping process, eventually leading to a premature failure of ASSBs. This review focuses on the garnet-type SSEs in the formula of Li7La3Zr2O12 (LLZO), and discusses the structure-performance relationship of this ceramic electrolyte in detail to achieve a clear understanding of its Li+ transmission mechanism. Meanwhile, the challenges of cubic phase LLZO (c-LLZO) for their application in solid-state batteries (SSBs) are demonstrated by the Li/LLZO interface, which features the importance of Li metal wettability and dendrite suppression for sustainable performance. Furthermore, this review summarizes the recent research strategies to combat these contact issues at the Li/LLZO interface, highlighting the essential role played by surface modification of LLZO electrolytes. Following the obtained insights, perspectives for future research on LLZO to accelerate its potential development of SSBs in commercialized applications are also provided.

Graphical Abstract

摘要

全固态电池(ASSBs)因其在能量密度、安全性和比较宽的温度工作范围等方面的优势,被认为是下一代储能技术的发展方向。然而,使用固态电解质代替液体电解质可能会带来其他相关的问题,比如固态电解质和电极之间的点对点接触,已知该不良接触会导致高界面电阻和Li+电镀/剥离过程中不均匀的电荷分布,进而最终导致ASSBs的过早失效。在我们的综述中,我们以公式为Li7La3Zr2O12 (LLZO)的石榴石型固态电解质为研究对象,详细讨论了这种陶瓷电解质的结构-性能关系,以明确其Li+传输机制。同时,以Li/LLZO界面为例介绍了立方相-LLZO在固态电池应用中面临的界面挑战,突出了Li金属润湿性和锂枝晶的抑制能力对可持续性能的重要性。此外,本综述还总结了解决Li/LLZO界面接触问题的最新研究策略,强调了LLZO电解质表面改性的重要作用。根据获得的见解,我们还对LLZO的未来研究提出了展望,以加速其在SSBs商业化应用中的发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [21]. Copyright 2009, Elsevier. b Cubic phase of LLZO. Reproduced with permission from Ref. [22]. Copyright 2011, Chemical Society Japan. Loop structures of Li+ migration pathway of c t-LLZO and d c-LLZO, where g stands for site occupancy ratio

Fig. 2

Reproduced with permission from Ref. [28]. Copyright 2015, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [71]. Copyright 2022, John Wiley and Sons. b Lithium dendrites growth. Reproduced with permission from Ref. [72]. Copyright 2020, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [73]. Copyright 2017, American Chemical Society. b Surface chemistry of LLZO exposed to humid air. Reproduced with permission from Ref. [74]. Copyright 2017 Royal Society of Chemistry. c Contact angle of molten Li on Li2CO3. Reproduced with permission from Ref. [73]. Copyright 2017, American Chemical Society. d SEM image of metallic Li/LLZO interface. Reproduced with permission from Ref. [75]. Copyright 2019, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [79]. Copyright 2018, American Chemical Society. b Interconnected holes (SE stands for second electron; BSE stands for backscattered electron). Reproduced with permission from Ref. [82]. Copyright 2015, Elsevier. c Cracks and d drain boundaries. Reproduced with permission from Ref. [83]. Copyright 2016, Elsevier

Fig. 6

Reproduced with permission from Ref. [89]. Copyright 2014, the Royal Society of Chemistry. b Sintering LLZT after introducing C. Reproduced with permission from Ref. [91]. Copyright 2018, American Chemical Society. c Immediate processing of LLZO surfaces with HCl solution. Reproduced with permission from Ref. [92]. Copyright 2019, Elsevier. d Immediate processing of LLZO surfaces with H3PO4 solution. Reproduced with permission from Ref. [93]. Copyright 2019, The Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [94]. Copyright 2017, American Association for the Advancement of Science. b Schematic diagram of wetting behavior of garnet-type SSEs surface by molten Li after adding Al2O3; c electrochemical impedance spectroscopy (EIS) profiles of Li/Al2O3-coated LLZO/Li and Li/LLZO/Li. Reproduced with permission from Ref. [100]. Copyright 2018, Springer Nature. d Drawing a graphite-based soft interface on LLZWO surface; e wettability comparison of Li on Li5.9Al0.2La3Zr1.75W0.25O12 (LLZWO) with and without graphite-based soft interface coating; f wetting behaviors of Li on graphite-coated LLZO. Reproduced with permission from Ref. [107]. Copyright 2018, American Chemical Society. g Schematic illustration of CAD method (PAA stands for poly(acrylic acid)); h SEM image of Li/LLZO interface after having an ultra-stable cycle capacity for 1000 h. Reproduced with permission from Ref. [108]. Copyright 2022, American Chemical Society. i Schematic illustration of in-situ surface modification of LLZTO by metal salt solution. Reproduced with permission from Ref. [112]. Copyright 2019, American Chemical Society. j Schematic diagram of LLZTO surface state before and after NH4F treatment. Reproduced with permission from Ref. [116]. Copyright 2020, John Wiley and Sons

Fig. 8

Reproduced with permission from Ref. [121]. Copyright 2017, American Chemical Society. d Schematic diagram of interface by introducing glue adhesiveness; e SEM images of cross-section of cathode/cured glue/anode cell; f voltage profiles of Li symmetrical cells with/without glue. Reproduced with permission from Ref. [122]. Copyright 2019, American Chemical Society

Fig. 9

Reproduced with permission from Ref. [126]. Copyright 2019, John Wiley and Sons. c Schematic diagram of interface contact between Li/LLZO and Li–C3N4/LLZO; d CCD curve of Li–C3N4/LLZO/Li–C3N4 symmetric cells. Reproduced with permission from Ref. [127]. Copyright 2020, John Wiley and Sons

Fig. 10

Reproduced with permission from Ref. [131]. Copyright 2020, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [133]. Copyright 2018, American Chemical Society. b Li/3D-SSE/Li battery manufacturing process diagram. Reproduced with permission from Ref. [134]. Copyright 2021, John Wiley and Sons

Similar content being viewed by others

References

  1. Shen X, Zhang Q, Ning T, Liu T, Luo Y, He X, Luo Z, Lu A. Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries. Mater Today Chem. 2020;18:100368. https://doi.org/10.1016/j.mtchem.2020.100368.

    Article  CAS  Google Scholar 

  2. Chen X, He W, Ding L-X, Wang S, Wang H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci. 2019;12(3):938. https://doi.org/10.1039/C8EE02617C.

    Article  CAS  Google Scholar 

  3. Chen L, Wu H, Ai X, Cao Y, Chen Z. Toward wide-temperature electrolyte for lithium–ion batteries. Battery Energy. 2022;1(2):20210006. https://doi.org/10.1002/bte2.20210006.

    Article  CAS  Google Scholar 

  4. Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W. Electrolytes for Li-ion transport—review. Solid State Ionics. 2015;276:107. https://doi.org/10.1016/j.ssi.2015.02.006.

    Article  CAS  Google Scholar 

  5. Huang B, Li ZH, Zhu YM, Che Y, Wang CA. Tailored lithium metal/polymer electrolyte interface with LiTa2PO8 fillers in PEO-based composite electrolyte. Rare Met. 2022;41(8):2826. https://doi.org/10.1007/s12598-021-01951-6.

    Article  CAS  Google Scholar 

  6. Li J, Wang R. Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries. Ceram Int. 2021;47(10, Part A):13280. https://doi.org/10.1016/j.ceramint.2021.02.034.

    Article  CAS  Google Scholar 

  7. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):16103. https://doi.org/10.1038/natrevmats.2016.103.

    Article  CAS  Google Scholar 

  8. Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo Y, Thangadurai V, Hu L. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev. 2020;120(10):4257. https://doi.org/10.1021/acs.chemrev.9b00427.

    Article  CAS  Google Scholar 

  9. Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev. 2020;120(14):6820. https://doi.org/10.1021/acs.chemrev.9b00268.

    Article  CAS  Google Scholar 

  10. Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan LZ, Nan CW. Solid garnet batteries. Joule. 2019;3(5):1190. https://doi.org/10.1016/j.joule.2019.03.019.

    Article  CAS  Google Scholar 

  11. Chen Y, Wen K, Chen T, Zhang X, Armand M, Chen S. Recent progress in all-solid-state lithium batteries: the emerging strategies for advanced electrolytes and their interfaces. Energy Stor Mater. 2020;31:401. https://doi.org/10.1016/j.ensm.2020.05.019.

    Article  Google Scholar 

  12. Yang L, Lu Z, Qin Y, Wu C, Fu C, Gao Y, Liu J, Jiang L, Du Z, Xie Z, Li Z, Kong F, Yin G. Interrelated interfacial issues between a Li7La3Zr2O12-based garnet electrolyte and Li anode in the solid-state lithium battery: a review. J Mater Chem A. 2021;9(10):5952. https://doi.org/10.1039/D0TA08179E.

    Article  CAS  Google Scholar 

  13. Dai J, Yang C, Wang C, Pastel G, Hu L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv Mater. 2018;30(48):1802068. https://doi.org/10.1002/adma.201802068.

    Article  CAS  Google Scholar 

  14. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778. https://doi.org/10.1002/anie.200701144.

    Article  CAS  Google Scholar 

  15. Allen JL, Wolfenstine J, Rangasamy E, Sakamoto J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources. 2012;206:315. https://doi.org/10.1016/j.jpowsour.2012.01.131.

    Article  CAS  Google Scholar 

  16. Wu JF, Chen EY, Yu Y, Liu L, Wu Y, Pang WK, Peterson VK, Guo X. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces. 2017;9(2):154. https://doi.org/10.1021/acsami.6b13902.

    Article  CAS  Google Scholar 

  17. Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces. 2015;7(3):2073. https://doi.org/10.1021/am508111r.

    Article  CAS  Google Scholar 

  18. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci. 2017;88:325. https://doi.org/10.1016/j.pmatsci.2017.04.007.

    Article  CAS  Google Scholar 

  19. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853. https://doi.org/10.1002/adma.201504526.

    Article  CAS  Google Scholar 

  20. Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2017;9(15):13694. https://doi.org/10.1021/acsami.7b00336.

    Article  CAS  Google Scholar 

  21. Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. 2009;182(8):2046. https://doi.org/10.1016/j.jssc.2009.05.020.

    Article  CAS  Google Scholar 

  22. Junji A, Akira T, Kunimitsu K, Norihito K, Yasushi I, Junji A. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem Lett. 2011;40(1):60. https://doi.org/10.1246/cl.2011.60.

    Article  CAS  Google Scholar 

  23. Krauskopf T, Dippel R, Hartmann H, Peppler K, Mogwitz B, Richter FH, Zeier WG, Janek J. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule. 2019;3(8):2030. https://doi.org/10.1016/j.joule.2019.06.013.

    Article  CAS  Google Scholar 

  24. Aktaş S, Özkendir OM, Eker YR, Ateş Ş, Atav Ü, Çelik G, Klysubun W. Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials. J Alloy Compd. 2019;792:279. https://doi.org/10.1016/j.jallcom.2019.04.049.

    Article  CAS  Google Scholar 

  25. Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater. 2021;11(2):2000648. https://doi.org/10.1002/aenm.202000648.

    Article  CAS  Google Scholar 

  26. Yeandel SR, Chapman BJ, Slater PR, Goddard P. Structure and lithium-ion dynamics in fluoride-doped cubic Li7La3Zr2O12 (LLZO) garnet for Li solid-state battery applications. J Phys Chem C. 2018;122(49):27811. https://doi.org/10.1021/acs.jpcc.8b07704.

    Article  CAS  Google Scholar 

  27. Song S, Chen B, Ruan Y, Sun J, Yu L, Wang Y, Thokchom J. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-ion batteries. Electrochim Acta. 2018;270:501. https://doi.org/10.1016/j.electacta.2018.03.101.

    Article  CAS  Google Scholar 

  28. Miara LJ, Richards WD, Wang YE, Ceder G. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem Mater. 2015;27(11):404. https://doi.org/10.1021/acs.chemmater.5b01023.

    Article  CAS  Google Scholar 

  29. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev. 2014;43(13):4714. https://doi.org/10.1039/C4CS00020J.

    Article  CAS  Google Scholar 

  30. Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics. 2012;206:28. https://doi.org/10.1016/j.ssi.2011.10.022.

    Article  CAS  Google Scholar 

  31. Wagner R, Redhammer GJ, Rettenwander D, Tippelt G, Welzl A, Taibl S, Fleig J, Franz A, Lottermoser W, Amthauer G. Fast Li-ion-conducting garnet-related Li7–3xFexLa3Zr2O12 with uncommon I4-3d structure. Chem Mater. 2016;28(16):5943. https://doi.org/10.1021/acs.chemmater.6b02516.

    Article  CAS  Google Scholar 

  32. Jiang Y, Zhu X, Qin S, Me L, Zhu J. Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics. 2017;300:73. https://doi.org/10.1016/j.ssi.2016.12.005.

    Article  CAS  Google Scholar 

  33. Dumon A, Huang M, Shen Y, Nan CW. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ionics. 2013;243:36. https://doi.org/10.1016/j.ssi.2013.04.016.

    Article  CAS  Google Scholar 

  34. Hanc E, Zając W, Molenda J. Synthesis procedure and effect of Nd, Ca and Nb doping on structure and electrical conductivity of Li7La3Zr2O12 garnets. Solid State Ionics. 2014;262:617. https://doi.org/10.1016/j.ssi.2013.11.033.

    Article  CAS  Google Scholar 

  35. Rangasamy E, Wolfenstine J, Allen J, Sakamoto J. The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. J Power Sources. 2013;230:261. https://doi.org/10.1016/j.jpowsour.2012.12.076.

    Article  CAS  Google Scholar 

  36. Meesala Y, Liao YK, Jena A, Yang NH, Pang WK, Hu SF, Chang H, Liu CE, Liao SC, Chen JM, Guo X, Liu RS. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J Mater Chem A. 2019;7(14):8589. https://doi.org/10.1039/C9TA00417C.

    Article  CAS  Google Scholar 

  37. Liu C, Rui K, Shen C, Badding ME, Zhang G, Wen Z. Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries. J Power Sources. 2015;282:286. https://doi.org/10.1016/j.jpowsour.2015.02.050.

    Article  CAS  Google Scholar 

  38. Ramakumar S, Satyanarayana L, Manorama SV, Murugan R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys Chem Chem Phys. 2013;15(27):11327. https://doi.org/10.1039/C3CP50991E.

    Article  CAS  Google Scholar 

  39. Li Y, Wang Z, Cao Y, Du F, Chen C, Cui Z, Guo X. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim Acta. 2015;180:37. https://doi.org/10.1016/j.electacta.2015.08.046.

    Article  CAS  Google Scholar 

  40. Liu X, Li Y, Yang T, Cao Z, He W, Gao Y, Liu J, Li G, Li Z. High lithium ionic conductivity in the garnet-type oxide Li7−2xLa3Zr2−xMoxO12 (x=0–0.3) ceramics by sol-gel method. J Am Ceram Soc. 2017;100(4):1527. https://doi.org/10.1111/jace.14736.

    Article  CAS  Google Scholar 

  41. Gai J, Zhao E, Ma F, Sun D, Ma X, Jin Y, Wu Q, Cui Y. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J Eur Ceram Soc. 2018;38(4):1673. https://doi.org/10.1016/j.jeurceramsoc.2017.12.002.

    Article  CAS  Google Scholar 

  42. Zha WP, Li JY, Yang DJ, Shen Q. Research advances of inorganic solid electrolyte Li7La3Zr2O12. Mater China. 2017;10:016. https://doi.org/10.7502/j.issn.1674-3962.2017.10.03.

    Article  CAS  Google Scholar 

  43. Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2). J Power Sources. 2011;196(6):3342. https://doi.org/10.1016/j.jpowsour.2010.11.089.

    Article  CAS  Google Scholar 

  44. El-Shinawi H, Cussen EJ, Corr SA. Enhancement of the lithium ion conductivity of Ta-doped Li7La3Zr2O12 by incorporation of calcium. Dalton Trans. 2017;46(29):9415. https://doi.org/10.1039/C7DT01573A.

    Article  CAS  Google Scholar 

  45. Yang T, Li Y, Wu W, Cao Z, He W, Gao Y, Liu J, Li G. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceram Int. 2018;44(2):1538. https://doi.org/10.1016/j.ceramint.2017.10.072.

    Article  CAS  Google Scholar 

  46. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem. 2011;50(3):1089. https://doi.org/10.1021/ic101914e.

    Article  CAS  Google Scholar 

  47. Il’ina EA, Andreev OL, Antonov BD, Batalov NN. Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate–nitrate methods. J Power Sources. 2012;201:169. https://doi.org/10.1016/j.jpowsour.2011.10.108.

    Article  CAS  Google Scholar 

  48. Xue W, Yang Y, Yang Q, Liu Y, Wang L, Chen C, Cheng R. The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis. RSC Adv. 2018;8(24):13083. https://doi.org/10.1039/C8RA01329B.

    Article  CAS  Google Scholar 

  49. Matsuda Y, Sakamoto K, Matsui M, Yamamoto O, Takeda Y, Imanishi N. Phase formation of a garnet-type lithium-ion conductor Li7−3xAlxLa3Zr2O12. Solid State Ionics. 2015;277:23. https://doi.org/10.1016/j.ssi.2015.04.011.

    Article  CAS  Google Scholar 

  50. Brugge RH, Kilner JA, Aguadero A. Germanium as a donor dopant in garnet electrolytes. Solid State Ionics. 2019;337:154. https://doi.org/10.1016/j.ssi.2019.04.021.

    Article  CAS  Google Scholar 

  51. Kotobuki M, Koishi M. High conductive Al-free Y-doped Li7La3Zr2O12 prepared by spark plasma sintering. J Alloys Compd. 2020;826:154213. https://doi.org/10.1016/j.jallcom.2020.154213.

    Article  CAS  Google Scholar 

  52. Hu S, Li YF, Yang R, Yang Z, Wang L. Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram Int. 2018;44(6):6614. https://doi.org/10.1016/j.ceramint.2018.01.065.

    Article  CAS  Google Scholar 

  53. Shao C, Yu Z, Liu H, Zheng Z, Sun N, Diao C. Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim Acta. 2017;225:345. https://doi.org/10.1016/j.electacta.2016.12.140.

    Article  CAS  Google Scholar 

  54. Song S, Yan B, Zheng F, Duong HM, Lu L. Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet. Solid State Ionics. 2014;268:135. https://doi.org/10.1016/j.ssi.2014.10.009.

    Article  CAS  Google Scholar 

  55. Janani N, Ramakumar S, Kannan S, Murugan R. Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12. J Am Ceram Soc. 2015;98(7):2039. https://doi.org/10.1111/jace.13578.

    Article  CAS  Google Scholar 

  56. Li Y, Yang T, Wu W, Cao Z, He W, Gao Y, Liu J, Li G. Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics (Kiel). 2018;24(11):3305. https://doi.org/10.1007/s11581-018-2497-3.

    Article  CAS  Google Scholar 

  57. Wang D, Zhong G, Dolotko O, Li Y, McDonald MJ, Mi J, Fu R, Yang Y. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J Mater Chem A. 2014;2(47):20271. https://doi.org/10.1039/C4TA03591G.

    Article  CAS  Google Scholar 

  58. Ohta S, Seki J, Yagi Y, Kihira Y, Tani T, Asaoka T. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources. 2014;265:40. https://doi.org/10.1016/j.jpowsour.2014.04.065.

    Article  CAS  Google Scholar 

  59. Buannic L, Orayech B, López Del Amo JM, Carrasco J, Katcho NA, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordés A. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater. 2017;29(4):1769. https://doi.org/10.1021/acs.chemmater.6b05369.

    Article  CAS  Google Scholar 

  60. Shen L, Wang L, Wang Z, Jin C, Peng L, Pan X, Sun J, Yang R. Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte. Solid State Ionics. 2019;339:114992. https://doi.org/10.1016/j.ssi.2019.05.027.

    Article  CAS  Google Scholar 

  61. Chen X, Wang T, Lu W, Cao T, Xue M, Li B, Zhang C. Synthesis of Ta and Ca doped Li7La3Zr2O12 solid-state electrolyte via simple solution method and its application in suppressing shuttle effect of Li–S battery. J Alloy Compd. 2018;744:386. https://doi.org/10.1016/j.jallcom.2018.02.134.

    Article  CAS  Google Scholar 

  62. Wu JF, Pang WK, Peterson VK, Wei L, Guo X. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces. 2017;9(14):12461. https://doi.org/10.1021/acsami.7b00614.

    Article  CAS  Google Scholar 

  63. Li X, Li R, Chu S, Liao K, Cai R, Zhou W, Shao Z. Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. J Alloy Compd. 2019;794:347. https://doi.org/10.1016/j.jallcom.2019.04.274.

    Article  CAS  Google Scholar 

  64. Dhivya L, Murugan R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS Appl Mater Interfaces. 2014;6(20):17606. https://doi.org/10.1021/am503731h.

    Article  CAS  Google Scholar 

  65. Liu XZ, Ding L, Liu YZ, Xiong LP, Chen J, Luo XL. Room-temperature ionic conductivity of Ba, Y, Al co-doped Li7La3Zr2O12 solid electrolyte after sintering. Rare Met. 2021;40(8):2301. https://doi.org/10.1007/s12598-020-01526-x.

    Article  CAS  Google Scholar 

  66. Tadanaga K, Takano R, Ichinose T, Mori S, Hayashi A, Tatsumisago M. Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochem Commun. 2013;33:51. https://doi.org/10.1016/j.elecom.2013.04.004.

    Article  CAS  Google Scholar 

  67. Miara LJ, Ong SP, Mo Y, Richards WD, Park Y, Lee JM, Lee HS, Ceder G. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2xy(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation. Chem Mater. 2013;25(15):3048. https://doi.org/10.1021/cm401232r.

    Article  CAS  Google Scholar 

  68. Indu MS, Alexander GV, Sreejith OV, Abraham SE, Murugan R. Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook toward practical solid-state lithium metal batteries. Mater Today Energy. 2021;21:1008. https://doi.org/10.1016/j.mtener.2021.100804.

    Article  CAS  Google Scholar 

  69. Barai P, Rojas T, Narayanan B, Ngo AT, Curtiss LA, Srinivasan V. Investigation of delamination-induced performance decay at the cathode/LLZO interface. Chem Mater. 2021;33(14):5527. https://doi.org/10.1021/acs.chemmater.0c04656.

    Article  CAS  Google Scholar 

  70. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878. https://doi.org/10.1021/acs.chemrev.0c00101.

    Article  CAS  Google Scholar 

  71. Guo S, Wu TT, Sun YG, Zhang SD, Li B, Zhang HS, Qi MY, Liu XH, Cao AM, Wan LJ. Interface engineering of a ceramic electrolyte by Ta2O5 nanofilms for ultrastable lithium metal batteries. Adv Funct Mater. 2022;32(24):2201498. https://doi.org/10.1002/adfm.202201498.

    Article  CAS  Google Scholar 

  72. Liu H, Cheng XB, Huang JQ, Yuan H, Lu Y, Yan C, Zhu GL, Xu R, Zhao CZ, Hou LP, He C, Kaskel S, Zhang Q. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2020;5(3):833. https://doi.org/10.1021/acsenergylett.9b02660.

    Article  CAS  Google Scholar 

  73. Sharafi A, Kazyak E, Davis AL, Yu S, Thompson T, Siegel DJ, Dasgupta NP, Sakamoto J. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater. 2017;29(18):7961. https://doi.org/10.1021/acs.chemmater.7b03002.

    Article  CAS  Google Scholar 

  74. Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer HM, Nanda J, Chi M, Siegel DJ, Sakamoto J. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J Mater Chem A. 2017;5(26):1347. https://doi.org/10.1039/C7TA03162A.

    Article  Google Scholar 

  75. Wen J, Huang Y, Duan J, Wu Y, Luo W, Zhou L, Hu C, Huang L, Zheng X, Yang W, Wen Z, Huang Y. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano. 2019;13(12):14549. https://doi.org/10.1021/acsnano.9b08803.

    Article  CAS  Google Scholar 

  76. Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva JG, Mücke R, Kaghazchi P, Guo X, Sun X. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ Sci. 2020;13(1):127. https://doi.org/10.1039/C9EE01903K.

    Article  CAS  Google Scholar 

  77. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005;152(2):A396. https://doi.org/10.1149/1.1850854.

    Article  CAS  Google Scholar 

  78. Ni JE, Case ED, Sakamoto JS, Rangasamy E, Wolfenstine JB. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci. 2012;47(23):7978. https://doi.org/10.1007/s10853-012-6687-5.

    Article  CAS  Google Scholar 

  79. Yu S, Siegel DJ. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl Mater Interfaces. 2018;10(44):38151. https://doi.org/10.1021/acsami.8b17223.

    Article  CAS  Google Scholar 

  80. Kazyak E, Garcia-Mendez R, LePage WS, Sharafi A, Davis AL, Sanchez AJ, Chen KH, Haslam C, Sakamoto J, Dasgupta NP. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter. 2020;2(4):1025. https://doi.org/10.1016/j.matt.2020.02.008.

    Article  Google Scholar 

  81. Raj R, Wolfenstine J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J Power Sources. 2017;343:119. https://doi.org/10.1016/j.jpowsour.2017.01.037.

    Article  CAS  Google Scholar 

  82. Ren Y, Shen Y, Lin Y, Nan CW. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27. https://doi.org/10.1016/j.elecom.2015.05.001.

    Article  CAS  Google Scholar 

  83. Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta. 2017;223:85. https://doi.org/10.1016/j.electacta.2016.12.018.

    Article  CAS  Google Scholar 

  84. Kim S, Jung C, Kim H, Thomas-Alyea KE, Yoon G, Kim B, Badding ME, Song Z, Chang J, Kim J, Im D, Kang K. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv Energy Mater. 2020;10(12):1903993. https://doi.org/10.1002/aenm.201903993.

    Article  CAS  Google Scholar 

  85. Swamy T, Park R, Sheldon BW, Rettenwander D, Porz L, Berendts S, Uecker R, Carter WC, Chiang YM. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J Electrochem Soc. 2018;165(16):A3648. https://doi.org/10.1149/2.1391814jes.

    Article  CAS  Google Scholar 

  86. Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017;7(20):1701003. https://doi.org/10.1002/aenm.201701003.

    Article  CAS  Google Scholar 

  87. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187. https://doi.org/10.1038/s41560-018-0312-z.

    Article  CAS  Google Scholar 

  88. Sun C, Ruan Y, Zha W, Li W, Cai M, Wen Z. Recent advances in anodic interface engineering for solid-state lithium-metal batteries. Mater Horiz. 2020;7(7):1667. https://doi.org/10.1039/D0MH00050G.

    Article  CAS  Google Scholar 

  89. Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys. 2014;16(34):18294. https://doi.org/10.1039/C4CP02921F.

    Article  CAS  Google Scholar 

  90. Wu JF, Pu BW, Wang D, Shi SQ, Zhao N, Guo X, Guo X. In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl Mater Interfaces. 2019;11(1):898. https://doi.org/10.1021/acsami.8b18356.

    Article  CAS  Google Scholar 

  91. Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough JB. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc. 2018;140(20):6448. https://doi.org/10.1021/jacs.8b03106.

    Article  CAS  Google Scholar 

  92. Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy. 2019;61:119. https://doi.org/10.1016/j.nanoen.2019.04.058.

    Article  CAS  Google Scholar 

  93. Ruan Y, Lu Y, Huang X, Su J, Sun C, Jin J, Wen Z. Acid induced conversion towards a robust and lithiophilic interface for Li–Li7La3Zr2O12 solid-state batteries. J Mater Chem A. 2019;7(24):14565. https://doi.org/10.1039/C9TA01911A.

    Article  CAS  Google Scholar 

  94. Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey Steven D, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv. 2017;3(4):e1601659. https://doi.org/10.1126/sciadv.1601659.

    Article  CAS  Google Scholar 

  95. He M, Cui Z, Chen C, Li Y, Guo X. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A. 2018;6(24):11463. https://doi.org/10.1039/C8TA02276C.

    Article  CAS  Google Scholar 

  96. Feng W, Dong X, Li P, Wang Y, Xia Y. Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. J Power Sources. 2019;419:91. https://doi.org/10.1016/j.jpowsour.2019.02.066.

    Article  CAS  Google Scholar 

  97. Fu K, Gong Y, Fu Z, Xie H, Yao Y, Liu B, Carter M, Wachsman E, Hu L. Transient behavior of the metal interface in lithium metal–garnet batteries. Angew Chem Int Ed. 2017;56(47):14942. https://doi.org/10.1002/anie.201708637.

    Article  CAS  Google Scholar 

  98. Zhao N, Fang R, He MH, Chen C, Li YQ, Bi ZJ, Guo XX. Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 2018;37(6):473. https://doi.org/10.1007/s12598-018-1057-3.

    Article  CAS  Google Scholar 

  99. Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y, Wachsman ED, Hu L. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138:12258. https://doi.org/10.1021/jacs.6b06777.

    Article  CAS  Google Scholar 

  100. Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572. https://doi.org/10.1038/nmat4821.

    Article  CAS  Google Scholar 

  101. Chen Y, He M, Zhao N, Fu J, Huo H, Zhang T, Li Y, Xu F, Guo X. Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. J Power Sources. 2019;420:15. https://doi.org/10.1016/j.jpowsour.2019.02.085.

    Article  CAS  Google Scholar 

  102. Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman ED, Hu L. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017;17:565. https://doi.org/10.1021/acs.nanolett.6b04695.

    Article  CAS  Google Scholar 

  103. Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin YH, Nan CW, Li L. An in situ-formed mosaic Li7Sn3/LiF interface layer for high-rate and long-life garnet-based lithium metal batteries. ACS Appl Mater Interfaces. 2019;11(38):34939. https://doi.org/10.1021/acsami.9b10534.

    Article  CAS  Google Scholar 

  104. Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva JG, Mücke R, Kaghazchi P, Guo X, Sun X. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energ Environ Sci. 2020;13(1):127. https://doi.org/10.1039/C9EE01903K.

    Article  CAS  Google Scholar 

  105. Liu K, Li Y, Zhang R, Wu M, Huang B, Zhao T. Facile surface modification method to achieve an ultralow interfacial resistance in garnet-based Li metal batteries. ACS Appl Energy Mater. 2019;2(9):6332. https://doi.org/10.1021/acsaem.9b00967.

    Article  CAS  Google Scholar 

  106. Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough JB. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 2018;18(11):7414. https://doi.org/10.1021/acs.nanolett.8b03902.

    Article  CAS  Google Scholar 

  107. Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu YS, Guo X, Li H, Huang X, Yang Y, Nan CW, Chen L. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 2018;3(6):1212. https://doi.org/10.1021/acsenergylett.8b00453.

    Article  CAS  Google Scholar 

  108. Guo S, Li Y, Li B, Grundish NS, Cao AM, Sun YG, Xu YS, Ji Y, Qiao Y, Zhang Q, Meng FQ, Zhao ZH, Wang D, Zhang X, Gu L, Yu X, Wan LJ. Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries. J Am Chem Soc. 2022;144(5):2179. https://doi.org/10.1021/jacs.1c10872.

    Article  CAS  Google Scholar 

  109. Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ Sci. 2019;12(4):1404. https://doi.org/10.1039/C8EE03390K.

    Article  CAS  Google Scholar 

  110. Lee K, Han S, Lee J, Lee S, Kim J, Ko Y, Kim S, Yoon K, Song JH, Noh JH, Kang K. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 2022;7(1):381. https://doi.org/10.1021/acsenergylett.1c02332.

    Article  CAS  Google Scholar 

  111. Wu TT, Guo S, Li B, Li JY, Zhang HS, Ma PZ, Zhang X, Shen CY, Liu XH, Cao AM. Facile construction of nanofilms from a dip-coating process to enable high-performance solid-state batteries. ACS Appl Mater Interfaces. 2022;14(28):32026. https://doi.org/10.1021/acsami.2c07292.

    Article  CAS  Google Scholar 

  112. Cai M, Lu Y, Su J, Ruan Y, Chen C, Chowdari BVR, Wen Z. In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface. ACS Appl Energy Mater. 2019;11(38):35030. https://doi.org/10.1021/acsami.9b13190.

    Article  CAS  Google Scholar 

  113. Cai M, Lu Y, Yao L, Jin J, Wen Z. Robust conversion-type Li/garnet interphases from metal salt solutions. Chem Eng J. 2021;417:129158. https://doi.org/10.1016/j.cej.2021.129158.

    Article  CAS  Google Scholar 

  114. Cai M, Jin J, Xiu T, Song Z, Badding ME, Wen Z. In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Mater. 2022;47:61. https://doi.org/10.1016/j.ensm.2022.01.046.

    Article  Google Scholar 

  115. Ruan Y, Lu Y, Li Y, Zheng C, Su J, Jin J, Xiu T, Song Z, Badding ME, Wen Z. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv Funct Mater. 2021;31(5):2007815. https://doi.org/10.1002/adfm.202007815.

    Article  CAS  Google Scholar 

  116. Duan H, Chen WP, Fan M, Wang WP, Yu L, Tan SJ, Chen X, Zhang Q, Xin S, Wan LJ, Guo YG. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew Chem Int Ed. 2020;59(29):12069. https://doi.org/10.1002/anie.202003177.

    Article  CAS  Google Scholar 

  117. Pervez SA, Ganjeh-Anzabi P, Farooq U, Trifkovic M, Roberts EPL, Thangadurai V. Fabrication of a dendrite-free all solid-state Li metal battery via polymer composite/garnet/polymer composite layered electrolyte. Adv Mater Interfaces. 2019;6(11):1900186. https://doi.org/10.1002/admi.201900186.

    Article  CAS  Google Scholar 

  118. Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough JB. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed. 2017;56(3):753. https://doi.org/10.1002/anie.201608924.

    Article  CAS  Google Scholar 

  119. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409. https://doi.org/10.1007/s12598-020-01501-6.

    Article  CAS  Google Scholar 

  120. Yang YN, Jiang FL, Li YQ, Wang ZX, Zhang T. Inside cover: a surface coordination interphase stabilizes a solid-state battery. Angew Chem Int Ed. 2021;60(45):23922. https://doi.org/10.1002/anie.202111739

  121. Liu B, Gong Y, Fu K, Han X, Yao Y, Pastel G, Yang C, Xie H, Wachsman ED, Hu L. Garnet solid electrolyte protected Li-metal batteries. ACS Appl Mater Interfaces. 2017;9(22):18809. https://doi.org/10.1021/acsami.7b03887.

    Article  CAS  Google Scholar 

  122. Dong D, Zhou B, Sun Y, Zhang H, Zhong G, Dong Q, Fu F, Qian H, Lin Z, Lu D, Shen Y, Wu J, Chen L, Chen H. Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019;19(4):2343. https://doi.org/10.1021/acs.nanolett.8b05019.

    Article  CAS  Google Scholar 

  123. Bi Z, Huang W, Mu S, Sun W, Zhao N, Guo X. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy. 2021;90:106498. https://doi.org/10.1016/j.nanoen.2021.106498.

    Article  CAS  Google Scholar 

  124. Tsai CL, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces. 2016;8:10617. https://doi.org/10.1021/acsami.6b00831.

    Article  CAS  Google Scholar 

  125. Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources. 2016;302:135. https://doi.org/10.1016/j.jpowsour.2015.10.053.

    Article  CAS  Google Scholar 

  126. Duan J, Wu W, Nolan AM, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y. Lithium–graphite paste: an interface compatible anode for solid-state batteries. Adv Mater. 2019;31(10):1807243. https://doi.org/10.1002/adma.201807243.

    Article  CAS  Google Scholar 

  127. Huang Y, Chen B, Duan J, Yang F, Wang T, Wang Z, Yang W, Hu C, Luo W, Huang Y. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew Chem Int Ed. 2020;59(9):3699. https://doi.org/10.1002/anie.201914417.

    Article  CAS  Google Scholar 

  128. Wang C, Xie H, Zhang L, Gong Y, Pastel G, Dai J, Liu B, Wachsman ED, Hu L. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv Energy Mater. 2018;8(6):1701963. https://doi.org/10.1002/aenm.201701963.

    Article  CAS  Google Scholar 

  129. Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z. An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. J Mater Chem A. 2018;6(39):18853. https://doi.org/10.1039/C8TA07241H.

    Article  CAS  Google Scholar 

  130. Yang C, Xie H, Ping W, Fu K, Liu B, Rao J, Dai J, Wang C, Pastel G, Hu L. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater. 2019;31(3):1804815. https://doi.org/10.1002/adma.201804815.

    Article  CAS  Google Scholar 

  131. Zhang Y, Meng J, Chen K, Wu H, Hu J, Li C. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett. 2020;5(4):1167. https://doi.org/10.1021/acsenergylett.0c00383.

    Article  CAS  Google Scholar 

  132. Hitz GT, McOwen DW, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann TR, Hu L, Wachsman ED. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today. 2019;22:50. https://doi.org/10.1016/j.mattod.2018.04.004.

    Article  CAS  Google Scholar 

  133. Xu S, McOwen DW, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y, Yang C, Hamann TR, Wachsman ED, Hu L. Three-dimensional, solid-state mixed electron–ion conductive framework for lithium metal anode. Nano Lett. 2018;18(6):3926. https://doi.org/10.1021/acs.nanolett.8b01295.

    Article  CAS  Google Scholar 

  134. Xu R, Liu F, Ye Y, Chen H, Yang RR, Ma Y, Huang W, Wan J, Cui Y. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv Mater. 2021;33(49):2104009. https://doi.org/10.1002/adma.202104009.

    Article  CAS  Google Scholar 

  135. Qin Z, Xie Y, Meng X, Qian D, Shan C, Mao D, He G, Zheng Z, Wan L, Huang Y. Interface engineering for garnet-type electrolyte enables low interfacial resistance in solid-state lithium batteries. Chem Eng J. 2022;447:1375. https://doi.org/10.1016/j.cej.2022.137538.

    Article  CAS  Google Scholar 

  136. Yang X, Tang S, Zheng C, Ren F, Huang Y, Fei X, Yang W, Pan S, Gong Z, Yang Y. From contaminated to highly lithiated interfaces: a versatile modification strategy for garnet solid electrolytes. Adv Funct Mater. 2022;33(3):2209120. https://doi.org/10.1002/adfm.202209120.

    Article  CAS  Google Scholar 

  137. Bi Z, Sun Q, Jia M, Zuo M, Zhao N, Guo X. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv Funct Mater. 2022;32(52):2208751. https://doi.org/10.1002/adfm.202208751.

    Article  CAS  Google Scholar 

  138. He X, Ji X, Zhang B, Rodrigo ND, Hou S, Gaskell K, Deng T, Wan H, Liu S, Xu J, Nan B, Lucht BL, Wang C. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett. 2022;7(1):131. https://doi.org/10.1021/acsenergylett.1c02122.

    Article  CAS  Google Scholar 

  139. Du M, Sun Y, Liu B, Chen B, Liao K, Ran R, Cai R, Zhou W, Shao Z. Smart construction of an intimate lithium | garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv Funct Mater. 2021;31(31):2101556. https://doi.org/10.1002/adfm.202101556.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22025507 and 21931012), the Key Research Program of Frontier Sciences, CAS (No. ZDBS-LY-SLH020), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Hu Liu or An-Min Cao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TT., Guo, S., Li, B. et al. Garnet-type solid-state electrolytes: crystal structure, interfacial challenges and controlling strategies. Rare Met. 42, 3177–3200 (2023). https://doi.org/10.1007/s12598-023-02323-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02323-y

Keywords

Navigation