Skip to main content
Log in

Revisiting the effect of molybdenum on pitting resistance of stainless steels

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

As an important alloyed element to improve the localized corrosion resistance of stainless steels, Mo has been widely studied by researchers. This article reviews the mechanisms of the effect of Mo on localized corrosion. Two possible effects and corresponding experimental research are described respectively: Mo exists in the passive film as oxide and enhances the film stability (manifesting as lower nucleation probability of localized corrosion and longer delay time of breakdown of the passive film); Mo affects dissolution kinetics and inhibits active dissolution current density (manifesting as smaller metastable pitting current density and size). Then some contradictory results are discussed by considering the pitting model proposedrecently. Strictly speaking, none of the existing experimental results can deny the effect of Mo on the passive film or on the dissolution kinetics. It is reasonable to believe that Mo affects the entire process of localized corrosion rather than a single reaction. Finally, some possible research suggestions are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [26], Copyright 1983, Elsevier

Fig. 2

Reproduced with permission from Ref. [17] Copyright 2020. The Author(s)

Fig. 3

Reproduced with permission from Ref. [20] Copyright 2017, Elsevier

Fig. 4

Reproduced with permission from Ref. [32]. Copyright 2002, Elsevier

Fig. 5

Reproduced with permission from Ref. [36] Copyright 2001 Elsevier

Fig. 6
Fig. 7

Copyright 2018 The Author(s)

Similar content being viewed by others

Change history

References

  1. Ma M, He C, Chen L, Wei L, Misra RDK. Effect of W and Ce additions on the electrochemical corrosion behaviour of 444-type ferritic stainless steel. Corros Eng Sci Technol. 2018;53:199.

    Article  CAS  Google Scholar 

  2. Ma L, Hu S, Shen J, Han J, Zhu Z. Effects of Cr content on the microstructure and properties of 26Cr–3.5Mo–2Ni and 29Cr–3.5Mo–2Ni super ferritic stainless steels. J Mater Sci Technol. 2016;32:552.

    Article  CAS  Google Scholar 

  3. Lu HH, Guo HK, Luo Y, Liu ZG, Li WQ, Li JC, Liang W. Microstructural evolution, precipitation and mechanical properties of hot rolled 27Cr–4Mo–2Ni ferritic steel during 800 °C aging. Mater Des. 2018;160:999.

    Article  CAS  Google Scholar 

  4. Távara SA, Chapetti MD, Otegui JL, Manfredi C. Influence of nickel on the susceptibility to corrosion fatigue of duplex stainless steel welds. Int J Fatigue. 2001;23(7):619.

    Article  Google Scholar 

  5. Wessman SM, Hertzman S, Pettersson R, Lagneborg R, Liljas M. On the effect of nickel substitution in duplex stainless steel. Mater Sci Technol. 2008;24(3):348.

    Article  CAS  Google Scholar 

  6. Mozhi TA, Clark WAT, Nishimoto K, Johnson WB, Macdonald DD. The effect of nitrogen on the sensitization of AISI 304 stainless steel. Corros Houst Tx. 1985;41(10):555.

    Article  CAS  Google Scholar 

  7. Cortie MB, Potgieter JH. The effect of temperature and nitrogen content on the partitioning of alloy elements in duplex stainless steels. Metall Trans A. 1991;22:2173.

    Article  Google Scholar 

  8. Llewellyn DT. Copper in steels. Ironmak Steelmak. 1995;22:25.

    CAS  Google Scholar 

  9. Yang W, Ni R, Hua H, Pourbaix A. The behavior of chromium and molybdenum in the propagation process of localized corrosion of steels. Corros Sci. 1984;24:691.

    Article  CAS  Google Scholar 

  10. Lizlovs EA. Anodic polarization behavior of high-purity 13 and 18% Cr stainless steels. J Electrochem Soc. 1975;122:719.

    Article  CAS  Google Scholar 

  11. Kaneko M, Isaacs HS. Effect of Mo on pitting corrosion of ferritic steels in bromide and chloride solutions. In: Natishan PM, Isaacs HS, JanikCzachor M, Macagno VA, Marcus P, Seo M (eds) Electrochemical Society Inc, Pennington. 1998; p. 97.

  12. Rockel MB, Renner M. Pitting, Crevice and stress corrosion resistance of high chromium und molybdenum alloy stainless steels. Mater Corros. 1984;35:537.

    Article  CAS  Google Scholar 

  13. Henderson JD, Li X, Shoesmith DW, Noël JJ, Ogle K. Molybdenum surface enrichment and release during transpassive dissolution of Ni-based alloys. Corros Sci. 2019;147:32.

    Article  CAS  Google Scholar 

  14. Lee JB. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique. Mater Chem Phys. 2006;99:224.

    Article  CAS  Google Scholar 

  15. Sugimoto K, Sawada Y. The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions. Corros Sci. 1977;17(5):425.

    Article  CAS  Google Scholar 

  16. Irhzo A, Segui Y, Bui N, Dabosi F. On the conduction mechanisms of passive films on molybdenum-containing stainless steel. Corros Houst Tx. 2012;42(3):141.

    Article  Google Scholar 

  17. Lynch B, Wang Z, Ma L, Paschalidou EM, Wiame F, Maurice V, Marcus P. Passivation-induced Cr and Mo enrichments of 316L stainless steel surfaces and effects of controlled pre-oxidation. J Electrochem Soc. 2020;167:141509.

    Article  CAS  Google Scholar 

  18. Olefjord I, Brox B, Jelvestam U. Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA. Chem Informationsdienst. 1986;17:2854.

    Google Scholar 

  19. Jung K, Ahn S, Kim Y, Oh S, Ryu WH, Kwon H. Alloy design employing high Cr concentrations for Mo-free stainless steels with enhanced corrosion resistance. Corros Sci. 2018;140:61.

    Article  CAS  Google Scholar 

  20. Loable C, Viçosa IN, Mesquita TJ, Mantel M, Nogueira RP, Berthomé G, Chauveau E, Roche V. Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effect. Mater Chem Phys. 2017;186:237.

    Article  CAS  Google Scholar 

  21. Hashimoto K, Asami K, Teramoto K. An X-ray photo-electron spectroscopic study on the role of molybdenum in increasing the corrosion resistance of ferritic stainless steels in HC1. Corros Ence. 1979;19:3.

    Article  CAS  Google Scholar 

  22. Baszkiewicz J, Kaminski M, Podgorski A, Jagielski J, Gawlik G. Pitting corrosion resistance of silicon-implanted stainless steels. Corros Ence. 1992;33:815.

    Article  CAS  Google Scholar 

  23. Sakashita M. Sato, Norio, Ion selectivity of precipitate films affecting passivation and corrosion of metals. Corrosion. 1979;35(8):351.

    Article  CAS  Google Scholar 

  24. Lu YC, Clayton CR, Brooks AR. A bipolar model of the passivity of stainless steels—II. The influence of aqueous molybdate. Corros Sci. 1989;29:863.

    Article  CAS  Google Scholar 

  25. Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Matykina E. Pitting corrosion behaviour of austenitic stainless steels—combining effects of Mn and Mo additions. Corros Sci. 2008;50:1796.

    Article  CAS  Google Scholar 

  26. Olefjord I, Brox B. Quantitative esca analysis of the passive state of an Fe–Cr alloy and an Fe–Cr–Mo alloy. in: Passiv. Met. Semicond., Elsevier, 1983: pp. 561.

  27. Mesquita TJ, Chauveau E, Mantel M, Kinsman N, Roche V, Nogueira RP. Lean duplex stainless steels—the role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings. Mater Chem Phys. 2012;132:967.

    Article  CAS  Google Scholar 

  28. Mesquita TJ, Chauveau E, Mantel M, Nogueira RP. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions. Appl Surf Sci. 2013;270:90.

    Article  CAS  Google Scholar 

  29. Newman RC. Determination of the minimum surface enrichment of molybdenum required to inhibit active dissolution of an Fe–Cr–Ni–Mo alloy. J Electrochem Soc. 1984;131:223.

    Article  CAS  Google Scholar 

  30. Wanklyn J. The role of molybdenum in the crevice corrosion of stainless-steels. Corros Sci. 1981;21:211.

    Article  CAS  Google Scholar 

  31. Galvele J, Lumsden J, Staehle R. Effect of molybdenum on pitting potential of high-purity 18-percent Cr ferritic stainless-steels. J Electrochem Soc. 1978;125:1204.

    Article  CAS  Google Scholar 

  32. Kaneko M, Isaacs HS. Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions. Corros Sci. 2002;44:1825.

    Article  CAS  Google Scholar 

  33. Alshamsi AS. Corrosion of heat-treated 304SS in the presence of molybdate ions in hydrochloric acid. Int J Electrochem Sci. 2013;8:591.

    CAS  Google Scholar 

  34. Sugimoto K, Sawada Y. Role of alloyed molybdenum in austenitic stainless-steels in inhibition of pitting in neutral halide solutions. Corrosion. 1976;32:347.

    Article  CAS  Google Scholar 

  35. Ernst P, Newman RC. The interaction between alloyed molybdenum and dissolved bromide in the pitting corrosion of stainless steels. Electrochem Solid-State Lett. 2008;11(1):C1.

    Article  CAS  Google Scholar 

  36. Ilevbare GO, Burstein GT. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels. Corros Sci. 2001;43:485.

    Article  CAS  Google Scholar 

  37. Xu YX, Yang Y. Microstructure and corrosion properties 0Cr21Mn17Mo2N08 high nitrogen austenitic stainless steel. Metals. 2018;8:653.

    Article  CAS  Google Scholar 

  38. Lemaitre C, Abdel Moneim A, Djoudjou R, Baroux B, Beranger G. A statistical study of the role of molybdenum in the pitting resistance of stainless steels. Corros Sci. 1993;34:1913.

    Article  CAS  Google Scholar 

  39. Frankel GS, Li T, Scully JR. Localized corrosion: passive film breakdown vs pit growth stability. ECS Meet Abstr. 2017;164(4):C180.

    CAS  Google Scholar 

  40. Carcea AG, Yip EYW, He DD, Newman RC. Anodic kinetics of NiCr[Mo] alloys during localized corrosion: I. Diffusion-controlled dissolution. J Electrochem Soc. 2011;158:C215.

    Article  CAS  Google Scholar 

  41. Li T, Scully JR, Frankel GS. Localized corrosion: passive film breakdown vs. pit growth stability: part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation. J Electrochem Soc. 2018;165:762.

    Article  CAS  Google Scholar 

  42. Li T, Scully JR, Frankel GS. Localized corrosion: passive film breakdown vs. pit growth stability: part IV. The role of salt film in pit growth: a mathematical framework. J Electrochem Soc. 2019;166:C115.

    Article  CAS  Google Scholar 

  43. Yaniv AE, Lumsden JB, Staehle RW. The composition of passive films on ferritic stainless steels. J Electrochem Soc. 1977;124:490.

    Article  CAS  Google Scholar 

  44. Goetz R, Landolt D. The influence of chromium content and potential on the surface composition of FeCrMo alloys studied by AES. Electrochim Acta. 1984;29:667.

    Article  CAS  Google Scholar 

  45. Marcus P, Moscatelli M. The role of alloyed molybdenum in the dissolution and the passivation of nickel-molybdenum alloys in the presence of adsorbed sulfur. ChemInform. 1989;136(6):1634.

    CAS  Google Scholar 

  46. Jargelius-Pettersson RFA, Pound BG. Examination of the role of molybdenum in passivation of stainless steels using AC impedance spectroscopy. J Electrochem Soc. 1998;145:1462.

    Article  CAS  Google Scholar 

  47. Heon-Young H, Tae-Ho L, Jee-Hwan B, Dong C. Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels. Met Open Access Metall J. 2018;8:653.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51901046, and 51871061).

Author information

Authors and Affiliations

Authors

Contributions

Yang-Ting Sun and Xin Tan wrote the draft; Long-Lin Lei and Yang-Ting Sun collected the references; Jin Li contributed to conceived the idea of the study. All authors contributed to the writing and revisions.

Corresponding author

Correspondence to Jin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YT., Tan, X., Lei, LL. et al. Revisiting the effect of molybdenum on pitting resistance of stainless steels. Tungsten 3, 329–337 (2021). https://doi.org/10.1007/s42864-021-00099-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00099-1

Keywords

Navigation