Skip to main content

Advertisement

Log in

Synthesis of cobalt, palladium, and rhenium nanoparticles

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Over the past decade, metal nanoparticles (MNPs) have attracted extensive attention due to their unique physiochemical properties that make them highly applicable in various fields such as chemical sensing, energy storage, catalysis, medicine, and environmental engineering. Their physiochemical properties depend drastically on the MNP size and morphology, which are largely determined by their synthesis methods. Research on MNPs predominantly focused on coinage metals (Au, Ag and Cu), but in the last decade research on metals with a relatively high melting temperature such as Pd, Co, and Re has seen rapid increases, mainly driven by their potential applications as catalysts. This paper presents the recent advances on different synthesis techniques of Co, Pd, and Re nanoparticles, their resulting nanostructures, as well as existing and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [58] Copyright 2015 RSC

Fig. 2

Reproduced with permission from Ref. [80] Copyright 2013 Elsevier

Fig. 3
Fig. 4

Reproduced with permission from Ref. [116] Copyright 2009 American Chemical Society

Fig. 5

Reproduced with permission from Ref. [119] Copyright 2009 John Wiley and Sons

Fig. 6

Reproduced with permission from Ref. [121] Copyright 2009 American Chemical Society

Fig. 7

Reproduced with permission from Ref. [124] Copyright 2016 John Wiley and Sons

Fig. 8

Reproduced with permission from Ref. [125] Copyright 2014 Springer-Nature

Fig. 9

Reproduced with permission from Ref. [135] Copyright 2013 Elsevier

Fig. 10

Reproduced with permission from Ref. [149] Copyright 2013 Springer Nature

Fig. 11
Fig. 12

Reproduced with permission from Ref. [174] Copyright 2017 American Chemical Society

Fig. 13
Fig. 14

Reproduced with permission from Ref. [179] Copyright 2019 American Chemical Society

Fig. 15

Reproduced with permission from Ref. [180] Copyright 2019 American Chemical Society

Similar content being viewed by others

Change history

References

  1. Feynman RP. There's plenty of room at the bottom. Caltech Eng Sci. 1960;23:22.

    Google Scholar 

  2. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908.

    Article  CAS  Google Scholar 

  3. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009;4(10):634.

    Article  CAS  Google Scholar 

  4. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050.

    Article  CAS  Google Scholar 

  5. Vinci G, Rapa M. Noble metal nanoparticles applications: recent trends in food control. Bioengineering. 2019;6(1):10.

    Article  CAS  Google Scholar 

  6. Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, Razansky D, Ntziachristos V, Kircher MF. Dual-modality surface-enhanced resonance raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation. Small. 2018;14(23):1800740.

    Article  CAS  Google Scholar 

  7. Kvitek L, Prucek R, Panacek A, Soukupova J. Physicochemical aspects of metal nanoparticle preparation. In: Avramescu SM, Akhtar K, Fierascu I, Khan SB, Ali F, Asiri AM, editors. Silver nanoparticles, health and safety. London: IntechOpen; 2020. p. 213.

    Google Scholar 

  8. Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28(2):237.

    Article  CAS  Google Scholar 

  9. Sau TK, Rogach AL. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater. 2010;22(16):1781.

    Article  CAS  Google Scholar 

  10. Li J, Zhao T, Chen T, Liu Y, Ong CN, Xie J. Engineering noble metal nanomaterials for environmental applications. Nanoscale. 2015;7(17):7502.

    Article  CAS  Google Scholar 

  11. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2019;53:101174.

    Article  CAS  Google Scholar 

  12. Rajput N. Methods of preparation of nanoparticles-a review. Int J Adv Eng Technol. 2015;7(6):1806.

    Google Scholar 

  13. Pacioni NL, Borsarelli CD, Rey V, Veglia AV. Synthetic routes for the preparation of silver nanoparticles. In: Alarcon EI, Griffith M, Udekwu KI, editors. Silver nanoparticle applications in the fabrication and design of medical and biosensing devices. Linkoling: Springer; 2015. p. 13.

    Chapter  Google Scholar 

  14. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17.

    Article  CAS  Google Scholar 

  15. Bucher J, Douglass D, Bloomfield L. Magnetic properties of free cobalt clusters. Phys Rev Lett. 1991;66(23):3052.

    Article  CAS  Google Scholar 

  16. Wen S, Liu Y, Zhao X. The hierarchical three-dimensional cobalt superstructure: controllable synthesis, electromagnetic properties and microwave absorption. Adv Powder Technol. 2015;26(6):1520.

    Article  CAS  Google Scholar 

  17. Yu Y, Mendoza-Garcia A, Ning B, Sun S. Cobalt-substituted magnetite nanoparticles and their assembly into ferrimagnetic nanoparticle arrays. Adv Mater. 2013;25(22):3090.

    Article  CAS  Google Scholar 

  18. Alshammari A, Kalevaru VN, Martin A. Metal nanoparticles as emerging green catalysts. In: Larramendy ML, Soloneski S, editors. Green nanotechnology, overview and further prospects. London: IntechOpen; 2016. p. 2334.

    Google Scholar 

  19. Dey S, Dhal G. The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide. Mater Today Chem. 2019;14:100198.

    Article  CAS  Google Scholar 

  20. Den Breejen J, Radstake P, Bezemer G, Bitter J, Frøseth V, Holmen A, de Jong Kd. On the origin of the cobalt particle size effects in Fischer−Tropsch catalysis. J Am Chem Soc. 2009;131(20):7197.

    Article  CAS  Google Scholar 

  21. Yang Y, Xu CL, Qiao L, Li XH, Li FS. Microwave magnetic properties and natural resonance of ε-Co nanoparticles. Chin Phys Lett. 2010;27(5):57501.

    Article  CAS  Google Scholar 

  22. Narayanan T, Shaijumon M, Ajayan P, Anantharaman M. Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth. J Phys Chem C. 2008;112(37):14281.

    Article  CAS  Google Scholar 

  23. Medvedeva O, Kambulova S, Bondar O, Gataulina A, Ulakhovich N, Gerasimov A, Evtugyn V, Gilmutdinov I, Kutyreva M. Magnetic cobalt and cobalt oxide nanoparticles in hyperbranched polyester polyol matrix. J Nanotechnol. 2017;7607658:1.

    Article  CAS  Google Scholar 

  24. Leso V, Iavicoli I. Palladium nanoparticles: toxicological effects and potential implications for occupational risk assessment. Int J Mol Sci. 2018;19(2):503.

    Article  CAS  Google Scholar 

  25. Iavicoli I, Bocca B, Carelli G, Caroli S, Caimi S, Alimonti A, Fontana L. Biomonitoring of tram drivers exposed to airborne platinum, rhodium and palladium. Int Arch Occup Environ Health. 2007;81(1):109.

    Article  CAS  Google Scholar 

  26. Ravindra K, Bencs L, Van Grieken R. Platinum group elements in the environment and their health risk. Sci Total Environ. 2004;318(1–3):1.

    Article  CAS  Google Scholar 

  27. Strobel R, Grunwaldt JD, Camenzind A, Pratsinis SE, Baiker A. Flame-made alumina supported Pd–Pt nanoparticles: structural properties and catalytic behavior in methane combustion. Catal Lett. 2005;104(1–2):9.

    Article  CAS  Google Scholar 

  28. Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc. 2006;128(14):4510.

    Article  CAS  Google Scholar 

  29. Semagina N, Renken A, Kiwi-Minsker L. Palladium nanoparticle size effect in 1-hexyne selective hydrogenation. J Phys Chem C. 2007;111(37):13933.

    Article  CAS  Google Scholar 

  30. Dimitratos N, Porta F, Prati L. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method: synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl Catal A. 2005;291(1–2):210.

    Article  CAS  Google Scholar 

  31. Hou Z, Theyssen N, Brinkmann A, Leitner W. Biphasic aerobic oxidation of alcohols catalyzed by poly (ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed. 2005;44(9):1346.

    Article  CAS  Google Scholar 

  32. Narayanan R, El-Sayed MA. Carbon-supported spherical palladium nanoparticles as potential recyclable catalysts for the Suzuki reaction. J Catal. 2005;234(2):348.

    Article  CAS  Google Scholar 

  33. Cheong S, Watt JD, Tilley RD. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale. 2010;2(10):2045.

    Article  CAS  Google Scholar 

  34. da Silva FP, Fiorio JL, Rossi LM. Tuning the catalytic activity and selectivity of Pd nanoparticles using ligand-modified supports and surfaces. ACS Omega. 2017;2(9):6014.

    Article  CAS  Google Scholar 

  35. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed. 2009;48(1):60.

    Article  CAS  Google Scholar 

  36. Henry CR. Morphology of supported nanoparticles. Prog Surf Sci. 2005;80(3–4):92.

    Article  CAS  Google Scholar 

  37. Ostroumov SA. Biological effects of surfactants. Boca Raton: Taylor & Francis; 2011. p. 255.

    Google Scholar 

  38. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner AP, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964.

    Article  CAS  Google Scholar 

  39. Abdel-Karim R, Reda Y, Abdel-Fattah A. Nanostructured materials-based nanosensors. J Electrochem Soc. 2020;167(3):037554.

    Article  CAS  Google Scholar 

  40. Naumov A. Rhythms of rhenium. Russ J Non-Ferrous Metals. 2007;48(6):418.

    Article  Google Scholar 

  41. Yurkov GY, Kozinkin AV, Koksharov YA, Fionov AS, Taratanov NA, Vlasenko VG, Pirog IV, Shishilov ON, Popkov OV. Synthesis and properties of rhenium–polyethylene nanocomposite. Compos B Eng. 2012;43(8):3192.

    Article  CAS  Google Scholar 

  42. Yao Y, Xu C, Qin J, Wei F, Rao M, Wang S. Synthesis of magnetic cobalt nanoparticles anchored on graphene nanosheets and catalytic decomposition of orange II. Ind Eng Chem Res. 2013;52(49):17341.

    Article  CAS  Google Scholar 

  43. Mattila P, Heinonen H, Loimula K, Forsman J, Johansson LS, Tapper U, Mahlberg R, Hentze HP, Auvinen A, Jokiniemi J. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption. J Nanopart Res. 2014;16(9):2606.

    Article  CAS  Google Scholar 

  44. Varaprasad T, Govindh B, Rao B. Green synthesized cobalt nanoparticles using Asparagus racemosus root extract & evaluation of antibacterial activity. Int J ChemTech Res. 2017;10:339.

    CAS  Google Scholar 

  45. Silva LSd, Almeida FNCd, Moretti AL, Cher GG, Arroyo PA. Size control of cobalt nanoparticles through synthesis parameter variation. J Nanosci Nanotechnol. 2017;17(7):4704.

    Article  CAS  Google Scholar 

  46. Cruz JC, Nascimento MA, Amaral HA, Lima DS, Teixeira APC, Lopes RP. Synthesis and characterization of cobalt nanoparticles for application in the removal of textile dye. J Environ Manag. 2019;242:220.

    Article  CAS  Google Scholar 

  47. Kudlash A, Vorobyova S, Lesnikovich A. Interphase synthesis of colloidal magnetic cobalt nanoparticles. Magnetohydrodynamics. 2008;44(1):11.

    Article  Google Scholar 

  48. Alex P, Majumdar S, Kishor J, Sharma IG. Synthesis of cobalt nano crystals in aqueous media and its characterization. Mater Sci Appl. 2011;2(9):1307.

    CAS  Google Scholar 

  49. Salman S, Usami T, Kuroda K, Okido M. Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid. J Nanotechnol. 2014;525193:1.

    Article  CAS  Google Scholar 

  50. Swain B, Hong HS, Jung HC. Commercial process development for synthesis of spherical cobalt nanopowder by wet chemical reduction reaction. Chem Eng J. 2015;264:654.

    Article  CAS  Google Scholar 

  51. Jang HD, Hwang DW, Kim DP, Kim HC, Lee BY, Jeong IB. Preparation of cobalt nanoparticles in the gas phase (I): Kinetics of cobalt dichloride reduction. J Ind Eng Chem. 2003;9(4):407.

    CAS  Google Scholar 

  52. Jang HD, Hwang DW, Kim DP, Kim HC, Lee BY, Jeong IB. Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase. Mater Res Bull. 2004;39(1):63.

    Article  CAS  Google Scholar 

  53. Dzidziguri EL, Sidorova EN, Inkar M, Yudin AG, Kostitsyna EV, Ozherelkov DY, Slusarsky KV, Nalivaiko AY, Gromov AA. Cobalt nanoparticles synthesis by cobalt nitrate reduction. Mater Res Exp. 2019;6(10):105081.

    Article  CAS  Google Scholar 

  54. Koskela P, Teirikangas M, Alastalo A, Forsman J, Juuti J, Tapper U, Auvinen A, Seppä H, Jantunen H, Jokiniemi J. Synthesis of cobalt nanoparticles to enhance magnetic permeability of metal–polymer composites. Adv Powder Technol. 2011;22(5):649.

    Article  CAS  Google Scholar 

  55. Kim HG, Lee H, Kim BH, Kim SJ, Lee JM, Jung SC. Synthesis process of cobalt nanoparticles in liquid-phase plasma. Jpn J Appl Phys. 2013;52(1S):01AN03.

    Article  CAS  Google Scholar 

  56. Seong G, Takami S, Arita T, Minami K, Hojo D, Yavari AR, Adschiri T. Supercritical hydrothermal synthesis of metallic cobalt nanoparticles and its thermodynamic analysis. J Supercrit Fluids. 2011;60:113.

    Article  CAS  Google Scholar 

  57. Ansari S, Bhor R, Pai K, Sen D, Mazumder S, Ghosh K, Kolekar Y, Ramana C. Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl Surf Sci. 2017;414:171.

    Article  CAS  Google Scholar 

  58. Liu Q, Cao X, Wang T, Wang C, Zhang Q, Ma L. Synthesis of shape-controllable cobalt nanoparticles and their shape-dependent performance in glycerol hydrogenolysis. RSC Adv. 2015;5(7):4861.

    Article  CAS  Google Scholar 

  59. Chen Z, Liu J, Evans AJ, Alberch L, Wei A. Calixarene-mediated synthesis of cobalt nanoparticles: an accretion model for separate control over nucleation and growth. Chem Mater. 2014;26(2):941.

    Article  CAS  Google Scholar 

  60. Yang H, Su Y, Shen C, Yang T, Gao H. Synthesis and magnetic properties of ε-cobalt nanoparticles. Surf Interface Anal. 2004;36(2):155.

    Article  CAS  Google Scholar 

  61. Bönnemann H, Brijoux W, Brinkmann R, Matoussevitch N, Waldöfner N, Palina N, Modrow H. A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles. Inorg Chim Acta. 2003;350:617.

    Article  CAS  Google Scholar 

  62. Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP. Synthesis of hcp-Co nanodisks. J Am Chem Soc. 2002;124(43):12874.

    Article  CAS  Google Scholar 

  63. Bao Y, An W, Turner CH. Krishnan KM The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir. 2010;26(1):478.

    Article  CAS  Google Scholar 

  64. Yadav M, Velampati RSR, Sharma R. Colloidal synthesized cobalt nanoparticles for nonvolatile memory device application. IEEE Trans Semicond Manuf. 2018;31(3):356.

    Article  Google Scholar 

  65. Salavati-Niasari M, Fereshteh Z, Davar F. Synthesis of cobalt nanoparticles from [bis (2-hydroxyacetophenato) cobalt (II)] by thermal decomposition. Polyhedron. 2009;28(6):1065.

    Article  CAS  Google Scholar 

  66. Sowka E, Leonowicz M, Andrzejewski B, Pomogailo A, Dzhardimalieva G. Cobalt nanoparticles processed by thermal decomposition of metal-containing monomers. Mater Sci-Wroclaw. 2006;24:311.

    CAS  Google Scholar 

  67. Gräf CP, Birringer R, Michels A. Synthesis and magnetic properties of cobalt nanocubes. Phys Rev B. 2006;73(21):212401.

    Article  CAS  Google Scholar 

  68. Zola AS, Ribeiro RU, Bueno JMC, Zanchet D, Arroyo PA. Cobalt nanoparticles prepared by three different methods. J Exp Nanosci. 2014;9(4):398.

    Article  CAS  Google Scholar 

  69. Schiavi PG, Altimari P, Pagnanelli F, Moscardini E, Toro L. Synthesis of cobalt nanoparticles by electrodeposition onto aluminium foils. Chem Eng Trans. 2015;43:673.

    Google Scholar 

  70. Grass RN, Stark WJ. Gas phase synthesis of fcc-cobalt nanoparticles. J Mater Chem. 2006;16(19):1825.

    Article  CAS  Google Scholar 

  71. Grass RN, Athanassiou EK, Stark WJ. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed. 2007;46(26):4909.

    Article  CAS  Google Scholar 

  72. Schumacher CM, Grass RN, Rossier M, Athanassiou EK, Stark WJ. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization. Langmuir. 2012;28(9):4565.

    Article  CAS  Google Scholar 

  73. Gürmen S, Stopić S, Friedrich B. Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis. Mater Res Bull. 2006;41(10):1882.

    Article  CAS  Google Scholar 

  74. Shatrova N, Yudin A, Levina V, Dzidziguri E, Kuznetsov D, Perov N, Issi JP. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction. Mater Res Bull. 2017;86:80.

    Article  CAS  Google Scholar 

  75. Chung BX, Liu CP. Synthesis of cobalt nanoparticles by DC magnetron sputtering and the effects of electron bombardment. Mater Lett. 2004;58(9):1437.

    Article  CAS  Google Scholar 

  76. Jacobsohn L, Hawley M, Cooke D, Hundley M, Thompson J, Schulze R, Nastasi M. Synthesis of cobalt nanoparticles by ion implantation and effects of postimplantation annealing. J Appl Phys. 2004;96(8):4444.

    Article  CAS  Google Scholar 

  77. Attri A, Kumar A, Verma S, Ojha S, Asokan K, Nair L. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation. Nanoscale Res Lett. 2013;8(1):433.

    Article  CAS  Google Scholar 

  78. El-Khatib AM, Badawi MS, Roston GD, Khalil AM, Moussa RM, Mohamed MM. Synthesis and characterization of cobalt nanoparticles prepared by arc discharge method using an ultrasonic nebulizer. J Nano Res. 2018;52:88.

    Article  CAS  Google Scholar 

  79. Jyothi L, Kuladeep R, Rao DN. Solvent effect on the synthesis of cobalt nanoparticles by pulsed laser ablation: their linear and nonlinear optical properties. J Nanophoton. 2015;9(1):093088.

    Article  CAS  Google Scholar 

  80. Yılmaz F, Lee DJ, Song JW, Hong HS, Son HT, Yoon JS, Hong SJ. Fabrication of cobalt nano-particles by pulsed wire evaporation method in nitrogen atmosphere. Powder Technol. 2013;235:1047.

    Article  CAS  Google Scholar 

  81. Siada R. Green synthesized cobalt nano particles for using as a good candidate for sensing organic compounds. J Electrochem Sci Technol. 2015;6(4):111.

    Article  Google Scholar 

  82. Igwe O, Ekebo E. Biofabrication of cobalt Nanoparticl odorata and their potentia. Res J Chem. 2018;8(1):11.

    CAS  Google Scholar 

  83. Ahmed K, Tariq I, Siddiqui SU, Mudassir M. Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure Appl Biol. 2016;5(3):453.

    CAS  Google Scholar 

  84. Kim SC, Kim BH, Kim SJ, Lee YS, Kim HG, Lee H, Park SH, Jung SC. Preparation and characterization of cobalt/graphene composites using liquid phase plasma system. J Nanosci Nanotechnol. 2015;15(1):228.

    Article  CAS  Google Scholar 

  85. Gubin S. Metalcontaining nano-particles within polymeric matrices: preparation, structure, and properties. Colloids Surf, A. 2002;202(2–3):155.

    Article  CAS  Google Scholar 

  86. Gubin S, Spichkin YI, Koksharov YA, Yurkov GY, Kozinkin A, Nedoseikina T, Korobov M, Tishin A. Magnetic and structural properties of Co nanoparticles in a polymeric matrix. J Magn Magn Mater. 2003;265(2):234.

    Article  CAS  Google Scholar 

  87. Wang X, Zhang F, Liu Y, Wang Z. Nitrogen-doped carbon nanotubes encapsulated cobalt nanoparticles hybrids for highly efficient catalysis of oxygen reduction reaction. J Electrochem Soc. 2018;165(15):J3052.

    Article  CAS  Google Scholar 

  88. Liu Y, Dong P, Li M, Wu H, Zhang C, Han L, Zhang Y. Cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotube as bifunctional-catalyst for rechargeable Zn-air batteries. Front Mater. 2019;6:85.

    Article  CAS  Google Scholar 

  89. Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2(3):104.

    Google Scholar 

  90. Luidold S, Antrekowitsch H. Hydrogen as a reducing agent: state-of-the-art science and technology. JOM. 2007;59(6):20.

    Article  CAS  Google Scholar 

  91. Kim HG, Lee H, Kim SJ, Kim DH, Kim JS, Kang SY, Jung SC. Synthesis of manganese nanoparticles in the liquid phase plasma. J Nanosci Nanotechnol. 2013;13(9):6103.

    Article  CAS  Google Scholar 

  92. Rabenau A. The role of hydrothermal synthesis in preparative chemistry. Angew Chem, Int Ed Engl. 1985;24(12):1026.

    Article  Google Scholar 

  93. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3(11):397.

    Article  CAS  Google Scholar 

  94. Walton RI. Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev. 2002;31(4):230.

    Article  CAS  Google Scholar 

  95. Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization—a review. Sci Technol Adv Mater. 2008;9(4):043001.

    Article  CAS  Google Scholar 

  96. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. Electrochemical synthesis of silver nanoparticles. J Phys Chem B. 2000;104(41):9683.

    Article  CAS  Google Scholar 

  97. Majerič P, Friedrich B, Rudolf R. Au-nanoparticle synthesis via ultrasonic spray pyrolysis with a separate evaporation zone. Materiali Tehnologije. 2015;5(49):791.

    Article  CAS  Google Scholar 

  98. Swihart MT. Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci. 2003;8(1):127.

    Article  CAS  Google Scholar 

  99. Wei Q. Surface modification of textiles. 2009. Cambridge: Woodhead Publidhing Limited and CRC Press LLc. 164.

  100. Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng. 2013;1(6):591.

    Article  CAS  Google Scholar 

  101. Wu G, Johnston CM, Mack NH, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco JS, Conradson SD, More KL, Myers DJ. Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J Mater Chem. 2011;21(30):11392.

    Article  CAS  Google Scholar 

  102. Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem Int Ed. 2014;53(17):4372.

    Article  CAS  Google Scholar 

  103. Philippot K, Serp P. Concepts in nanocatalysis. Nanomater Catalysis. 2013;1:1.

    Google Scholar 

  104. Suzuki A. Carbon–carbon bonding made easy. Chem Commun. 2005;38:4759.

    Article  CAS  Google Scholar 

  105. Reetz MT, De Vries JG. Ligand-free Heck reactions using low Pd-loading. Chem Commun. 2004;14:1559.

    Article  CAS  Google Scholar 

  106. Yamauchi M, Ikeda R, Kitagawa H, Takata M. Nanosize effects on hydrogen storage in palladium. J Phys Chem C. 2008;112(9):3294.

    Article  CAS  Google Scholar 

  107. Ye M, Gong J, Lai Y, Lin C, Lin Z. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc. 2012;134(38):15720.

    Article  CAS  Google Scholar 

  108. Zeng Q, Cheng JS, Liu XF, Bai HT, Jiang JH. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron. 2011;26(8):3456.

    Article  CAS  Google Scholar 

  109. Zhang Y, Xiang Q, Xu J, Xu P, Pan Q, Li F. Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances. J Mater Chem. 2009;19(27):4701.

    Article  CAS  Google Scholar 

  110. Gobal F, Faraji M. Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor. J Electroanal Chem. 2013;691:51.

    Article  CAS  Google Scholar 

  111. Park JE, Park SG, Koukitu A, Hatozaki O, Oyama N. Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery. Synth Met. 2004;140(2–3):121.

    Article  CAS  Google Scholar 

  112. Vishnukumar P, Vivekanandhan S, Muthuramkumar S. Plant-mediated biogenic synthesis of palladium nanoparticles: recent trends and emerging opportunities. ChemBioEng Rev. 2017;4(1):18.

    Article  Google Scholar 

  113. Srimani D, Sawoo S, Sarkar A. Convenient synthesis of palladium nanoparticles and catalysis of Hiyama coupling reaction in water. Org Lett. 2007;9(18):3639.

    Article  CAS  Google Scholar 

  114. Mazumder V, Sun S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc. 2009;131(13):4588.

    Article  CAS  Google Scholar 

  115. Vancová M, Šlouf M, Langhans J, Pavlová E, Nebesářová J. Application of colloidal palladium nanoparticles for labeling in electron microscopy. Microsc Microanal. 2011;17(5):810.

    Article  CAS  Google Scholar 

  116. Huang X, Zheng N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J Am Chem Soc. 2009;131(13):4602.

    Article  CAS  Google Scholar 

  117. Nemamcha A, Rehspringer JL, Khatmi D. Synthesis of palladium nanoparticles by sonochemical reduction of palladium (II) nitrate in aqueous solution. J Phys Chem B. 2006;110(1):383.

    Article  CAS  Google Scholar 

  118. Qiu XF, Xu JZ, Zhu JM, Zhu JJ, Xu S, Chen HY. Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J Mater Res. 2003;18(6):1399.

    Article  CAS  Google Scholar 

  119. Li C, Sato R, Kanehara M, Zeng H, Bando Y, Teranishi T. Controllable polyol synthesis of uniform palladium icosahedra: effect of twinned structure on deformation of crystalline lattices. Angew Chem Int Ed. 2009;48(37):6883.

    Article  CAS  Google Scholar 

  120. Garg G, Foltran S, Favier I, Pla D, Medina-Gonzalez Y, Gómez M. Palladium nanoparticles stabilized by novel choline-based ionic liquids in glycerol applied in hydrogenation reactions. Catal Today. 2019;346:69.

    Article  CAS  Google Scholar 

  121. Chen YH, Hung HH, Huang MH. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J Am Chem Soc. 2009;131(25):9114.

    Article  CAS  Google Scholar 

  122. Niu W, Li ZY, Shi L, Liu X, Li H, Han S, Chen J, Xu G. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst Growth Des. 2008;8(12):4440.

    Article  CAS  Google Scholar 

  123. Klinkova A, Larin EM, Prince E, Sargent EH, Kumacheva E. Large-scale synthesis of metal nanocrystals in aqueous suspensions. Chem Mater. 2016;28(9):3196–202.

    Article  CAS  Google Scholar 

  124. Klinkova A, Cherepanov PV, Ryabinkin IG, Ho M, Ashokkumar M, Izmaylov AF, Andreeva DV, Kumacheva E. Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small. 2016;12(18):2450.

    Article  CAS  Google Scholar 

  125. Wei Z, Matsui H. Rational strategy for shaped nanomaterial synthesis in reverse micelle reactors. Nat Commun. 2014;5(1):1.

    CAS  Google Scholar 

  126. Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng. 2002;80(4):369.

    Article  CAS  Google Scholar 

  127. Lengke MF, Fleet ME, Southam G. Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir. 2007;23(17):8982.

    Article  CAS  Google Scholar 

  128. Manocchi AK, Horelik NE, Lee B, Yi H. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates. Langmuir. 2010;26(5):3670.

    Article  CAS  Google Scholar 

  129. Yang C, Manocchi AK, Lee B, Yi H. Viral-templated palladium nanocatalysts for Suzuki coupling reaction. J Mater Chem. 2011;21(1):187.

    Article  CAS  Google Scholar 

  130. Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10(8):859.

    Article  CAS  Google Scholar 

  131. Lakshmipathy R, Reddy BP, Sarada N, Chidambaram K, Pasha SK. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci. 2015;5(2):223.

    Article  CAS  Google Scholar 

  132. Shaik MR, Ali ZJQ, Khan M, Kuniyil M, Assal ME, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH, Khan M, Adil SF. Green synthesis and characterization of palladium nanoparticles using Origanum vulgare L. extract and their catalytic activity. Molecules. 2017;22(1):165.

    Article  CAS  Google Scholar 

  133. Hazarika M, Borah D, Bora P, Silva AR, Das P. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS ONE. 2017;12(9):e0184936.

    Article  CAS  Google Scholar 

  134. Kanchana A, Devarajan S, Ayyappan SR. Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-micro Lett. 2010;2(3):169.

    Article  CAS  Google Scholar 

  135. Eroglu E, ChenXJ, Bradshaw M, Agarwal V, ZouJL, Stewart SG, Duan XF, Lamb RN, Smith SM, Raston CL, Iyer KS. Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Adv. 2013;3(4):1009.  

  136. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N. Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol. 2011;3:14.

    Article  CAS  Google Scholar 

  137. Ullah S, Ahmad A, Khan A, Zhang J, Raza M, ur Rahman A, Tariq M, Zada S, Yuan Q. Palladium nanoparticles synthesis, characterization using glucosamine as the reductant and stabilizing agent to explore their antibacterial & catalytic applications. Microb Pathog. 2018;125:150.

    Article  CAS  Google Scholar 

  138. Li G, Li Y, Wang Z, Liu H. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater Chem Phys. 2017;187:133.

    Article  CAS  Google Scholar 

  139. Gioria E, Wisniewski F, Gutierrez L. Microreactors for the continuous and green synthesis of palladium nanoparticles: enhancement of the catalytic properties. J Environ Chem Eng. 2019;7(3):103136.

    Article  CAS  Google Scholar 

  140. Liu M, Wu L, Han J, Xu X, He C, Wang P, Wei Q, Yang W. Facile synthesis of palladium nanoparticles on hierarchical hollow silica spheres and its catalytic properties in Suzuki-reaction. R Soc Open Sci. 2018;5(9):180545.

    Article  CAS  Google Scholar 

  141. Ko YJ, Kim JY, Lee KS, Park JK, Baik YJ, Choi HJ, Lee WS. Palladium nanoparticles from surfactant/fast-reduction combination one-pot synthesis for the liquid fuel cell applications. Int J Hydrogen Energy. 2018;43(41):19029.

    Article  CAS  Google Scholar 

  142. Elazab HA, Moussa S, Gupton BF, El-Shall MS. Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation. J Nanopart Res. 2014;16(7):2477.

    Article  CAS  Google Scholar 

  143. Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 2010;3(6):429.

    Article  CAS  Google Scholar 

  144. Kakaei K, Gharibi H. Palladium nanoparticle catalysts synthesis on graphene in sodium dodecyl sulfate for oxygen reduction reaction. Energy. 2014;65:166.

    Article  CAS  Google Scholar 

  145. Tang X, Haddad PA, Mager N, Geng X, Reckinger N, Hermans S, Debliquy M, Raskin J-P. Chemically deposited palladium nanoparticles on graphene for hydrogen sensor applications. Sci Rep. 2019;9(1):1.

    Google Scholar 

  146. Moussa S, Abdelsayed V, El-Shall MS. Laser synthesis of Pt, Pd, CoO and Pd–CoO nanoparticle catalysts supported on graphene. Chem Phys Lett. 2011;510(4–6):179.

    Article  CAS  Google Scholar 

  147. Shim H, Phillips J, Fonseca I, Carabinerio S. Plasma generation of supported metal catalysts. Appl Catal A. 2002;237(1–2):41.

    Article  CAS  Google Scholar 

  148. Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Mater Lett. 2001;50(2–3):53.

    Article  CAS  Google Scholar 

  149. Sun T, Zhang Z, Xiao J, Chen C, Xiao F, Wang S, Liu Y. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci Rep. 2013;3(1):1.

    Google Scholar 

  150. Dang-Bao T, Pradel C, Favier I, Gómez M. Bimetallic nanocatalysts in glycerol for applications in controlled synthesis. A structure–reactivity relationship study. ACS Appl Nano Mater. 2019;2(2):1033.

    Article  CAS  Google Scholar 

  151. Asano S, Maki T, Sebastian V, Jensen KF, Mae K. Revealing the formation mechanism of alloyed Pd–Ru nanoparticles: a conversion measurement approach utilizing a microflow reactor. Langmuir. 2019;35(6):2236.

    Article  CAS  Google Scholar 

  152. Cong C, Nakayama S, Maenosono S, Harada M. Microwave-assisted polyol synthesis of Pt/Pd and Pt/Rh bimetallic nanoparticles in polymer solutions prepared by batch and continuous-flow processing. Ind Eng Chem Res. 2018;57(1):179.

    Article  CAS  Google Scholar 

  153. Wu KJ, Gao Y, Torrente-Murciano L. Continuous synthesis of hollow silver–palladium nanoparticles for catalytic applications. Faraday Discuss. 2018;208:427.

    Article  CAS  Google Scholar 

  154. Rak MJ, Friščić T, Moores A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discuss. 2014;170:155.

    Article  CAS  Google Scholar 

  155. Karikalan N, Karthik R, Chen SM, Karuppiah C, Elangovan A. Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci Rep. 2017;7(1):1.

    Article  CAS  Google Scholar 

  156. Fiévet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal JY, Sicard L, Viau G. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem Soc Rev. 2018;47(14):5187.

    Article  Google Scholar 

  157. Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms. Upper Saddle River: Prentice Hall; 1997. p. 121.

    Google Scholar 

  158. Hassel AW, Rodriguez BB, Milenkovic S, Schneider A. Fabrication of rhenium nanowires by selective etching of eutectic alloys. Electrochim Acta. 2005;51(5):795.

    Article  CAS  Google Scholar 

  159. Valenzuela CD, Valenzuela ML, Caceres S, O'Dwyer C. Solution and surfactant-free growth of supported high index facet SERS active nanoparticles of rhenium by phase demixing. J Mater Chem A. 2013;1(5):1566.

    Article  CAS  Google Scholar 

  160. Dobrzańska-Danikiewicz AD, Łukowiec D, Wolany W. Comparative analysis of the structure of nanocomposites consisting of MWCNTs and Pt or Re nanoparticles. Carbon Nanotechnol. 2015; Manchester:One Central Press. 31.

  161. Chong YY, Chow WY, Fan WY. Preparation of rhenium nanoparticles via pulsed-laser decomposition and catalytic studies. J Colloid Interface Sci. 2012;369(1):164.

    Article  CAS  Google Scholar 

  162. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C. Microwave Irradiation for the Facile. Chem Eur J. 2010;16(12):3849.

    Article  CAS  Google Scholar 

  163. Anantharaj S, Sakthikumar K, Elangovan A, Ravi G, Karthik T, Kundu S. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: an excellent material for surface enhanced Raman scattering and catalysis studies. J Colloid Interface Sci. 2016;483:360.

    Article  CAS  Google Scholar 

  164. Mucalo MR, Bullen CR. Rhenium-based hydrosols: preparation and properties. J Colloid Interface Sci. 2001;239(1):71.

    Article  CAS  Google Scholar 

  165. Yi J, Miller JT, Zemlyanov DY, Zhang R, Dietrich PJ, Ribeiro FH, Suslov S, Abu-Omar MM. A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C–H activation. Angew Chem Int Ed. 2014;53(3):833.

    Article  CAS  Google Scholar 

  166. Revina A, Kuznetsov M, Chekmarev A. Physicochemical properties of rhenium nanoparticles obtained in reverse micelles. Dokl Chem. 2013;450:119.

    Article  CAS  Google Scholar 

  167. Revina A, Kuznetsov M, Chekmarev A, Boyakov E, Zolotarevskii V. Synthesis and physicochemical properties of rhenium nanoparticles. Protect Metals Phys Chem Surf. 2018;54(1):43.

    Article  CAS  Google Scholar 

  168. Bedia J, Calvo L, Lemus J, Quintanilla A, Casas J, Mohedano A, Zazo J, Rodriguez J, Gilarranz M. Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids Surf, A. 2015;469:202.

    Article  CAS  Google Scholar 

  169. Gyger F, Bockstaller P, Gerthsen D, Feldmann C. Ammonia-in-oil-microemulsions and their application. Angew Chem Int Ed. 2013;52(47):12443.

    Article  CAS  Google Scholar 

  170. Ayvalı T, Lecante P, Fazzini PF, Gillet A, Philippot K, Chaudret B. Facile synthesis of ultra-small rhenium nanoparticles. Chem Commun. 2014;50(74):10809.

    Article  CAS  Google Scholar 

  171. Milenkovic S, Hassel AW, Schneider A. Effect of the growth conditions on the spatial features of Re nanowires produced by directional solidification. Nano Lett. 2006;6(4):794.

    Article  CAS  Google Scholar 

  172. Philippe L, Peyrot I, Michler J, Hassel A, Milenkovic S. Yield stress of monocrystalline rhenium nanowires. Appl Phys Lett. 2007;91(11):111919.

    Article  CAS  Google Scholar 

  173. Philippe L, Wang Z, Peyrot I, Hassel A, Michler J. Nanomechanics of rhenium wires: elastic modulus, yield strength and strain hardening. Acta Mater. 2009;57(14):4032.

    Article  CAS  Google Scholar 

  174. Kundu S, Ma L, Dai W, Chen Y, Sinyukov AM, Liang H. Polymer encapsulated self-assemblies of ultrasmall rhenium nanoparticles: catalysis and SERS applications. ACS Sustain Chem Eng. 2017;5(11):10186.

    Article  CAS  Google Scholar 

  175. Sakthikumar K, Anantharaj S, Ede SR, Karthick K, Kundu S. A highly stable rhenium organosol on a DNA scaffold for catalytic and SERS applications. J Mater Chem C. 2016;4(26):6309.

    Article  CAS  Google Scholar 

  176. Taratanov N, Yurkov GY, Koksharov YA, Bouznik V. Preparation and properties of composite materials based on rhenium-containing nanoparticles and micrograins of polytetrafluoroethylene. Inorgan Mater Appl Res. 2011;2(2):118.

    Article  Google Scholar 

  177. Dobrzańska-Danikiewicz AD, Wolany W, Łukowiec D, Jurkiewicz K, Niedziałkowski P. Characteristics of multiwalled carbon nanotubes-rhenium nanocomposites with varied rhenium mass fractions. Nanomater Nanotechnol. 2017;7:1847980417707173.

    Article  CAS  Google Scholar 

  178. Hong UG, Park HW, Lee J, Hwang S, Yi J, Song IK. Hydrogenation of succinic acid to tetrahydrofuran (THF) over rhenium catalyst supported on H2SO4-treated mesoporous carbon. Appl Catal A. 2012;415:141.

    Article  CAS  Google Scholar 

  179. Kim M, Yang Z, Park JH, Yoon SM, Grzybowski BA. Nanostructured rhenium-carbon composites as hydrogen-evolving catalysts effective over the entire pH Range. ACS Appl Nano Mater. 2019;2(5):2725.

    Article  CAS  Google Scholar 

  180. Veerakumar P, Thanasekaran P, Lin KC, Liu SB. Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: efficient catalysts for the reduction of aromatic nitro compounds. J Colloid Interface Sci. 2019;506:271.

    Article  CAS  Google Scholar 

  181. Soleimani Zohr Shiri M, Henderson W, Mucalo MR. A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, Os, Re, Ir and Rh. Materials. 2019;12(12):1896.

    Article  CAS  Google Scholar 

  182. Zielińska-Jurek A, Reszczyńska J, Grabowska E, Zaleska A. Nanoparticles preparation using microemulsion systems. In: Najjar R, editor. Microemulsions-an introduction to properties and applications. Croatia InTech: Croatia; 2012. p. 229.

    Google Scholar 

  183. Zhao Z, Gao J, Wei L, Chui K. Tungsten wires and porous NiAl prepared through directional solidification and selective dissolution. Mater Manuf Process. 2017;32(16):1817.

    Article  CAS  Google Scholar 

  184. Chen YH, Shen YM, Wang SC, Huang JL. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition. Thin Solid Films. 2014;570:303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Institutes of Health (NIH) (Grant No. R15CA199019) and Cancer Prevention Research Institute of Texas (CPRIT) (Grant No. PR190678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Wu Hao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar Bahadori, S., Hart, R. & Hao, YW. Synthesis of cobalt, palladium, and rhenium nanoparticles. Tungsten 2, 261–288 (2020). https://doi.org/10.1007/s42864-020-00057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00057-3

Keywords

Navigation