Skip to main content

Advertisement

Log in

Carbon nanotubes and montmorillonite reinforced carbon foam composites containing hollow microspheres

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon foam composites containing hollow microspheres, reinforced by carbon nanotubes (CNTs) and montmorillonite (MMT), have been developed as the thermal insulation and EMI shielding layer. The effects of additive amounts of CNTs/MMT on microstructure and properties of the carbon foam composites were investigated. Results showed that carbon foam composites had hierarchical porous structure, with CNTs and MMT being relatively uniformly dispersed in the composites. The addition of multiscale additives improved the mechanical, electromagnetic shielding effectiveness and thermal insulation properties of carbon foam composites. The composites containing 0.2 wt.% CNTs and 5 wt.% MMT, showed outstanding compressive strength, up to 8.54 MPa, increased by 116% to pure carbon foam. Their electromagnetic shielding effectiveness was as high as 65 dB, increased by 75%. Due to the hierarchical porous structure and MMT’s heat barrier effect, carbon foam composites presented remarkable thermal insulation properties. The minimum thermal conductivity was 0.45 W·m−1·K−1 at 800 °C. Their exceptional thermal protection can also be evidenced by ablation resistance under flame at 1000 °C. Therefore, such multifunctional carbon-based composites are ideal for use in thermal protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this work are available from the corresponding author upon request.

References

  1. Liu HG, Wu SQ, Tian N, Yan FX, You CY, Yang T (2020) Carbon foams: 3D porous carbon materials holding immense potential. J Mater Chem A 8(45):23699–23723. https://doi.org/10.1039/d0ta08749a

    Article  CAS  Google Scholar 

  2. Wu SQ, Chen DM, Zhao GD, Cheng Y, Sun BQ, Yan XJ, Han WB, Chen GQ, Zhang XH (2022) Controllable synthesis of a robust sucrose-derived bio-carbon foam with 3D hierarchical porous structure for thermal insulation, flame retardancy and oil absorption. Chem Eng J 434:134514. https://doi.org/10.1016/j.cej.2022.134514

    Article  CAS  Google Scholar 

  3. Zhao B, Bai PW, Yuan MY, Yan ZK, Fan BB, Zhang R, Che RC (2022) Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon 197:570–578. https://doi.org/10.1016/j.carbon.2022.06.010

    Article  CAS  Google Scholar 

  4. Li QL, Chen L, Ding JJ, Zhang JJ, Li XH, Zheng K, Zhang X, Tian XY (2016) Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon 104:90–105. https://doi.org/10.1016/j.carbon.2016.03.055

    Article  CAS  Google Scholar 

  5. Zimmermann MVG, Perondi D, Lazzari LK, Godinho M, Zattera AJ (2020) Carbon foam production by biomass pyrolysis. J Porous Mat 27:1119–1125. https://doi.org/10.1007/s10934-020-00888-y

    Article  CAS  Google Scholar 

  6. Li WQ, Liu HF, Zhang HB, Xu H (2020) Effect of Ti content on microstructure and performance of carbon foam derived from mesophase pitch. J Porous Mat 27:989–993. https://doi.org/10.1007/s10934-020-00876-2

    Article  CAS  Google Scholar 

  7. Song SA, Lee YM, Kim YS, Kim SS (2017) Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Compos Struct 173:1–8. https://doi.org/10.1016/j.compstruct.2017.04.001

    Article  Google Scholar 

  8. Stahlfeld KW, Belmont EL (2021) Carbon foam production from lignocellulosic biomass via high pressure pyrolysis. J Anal Appl Pyrol 156:105115. https://doi.org/10.1016/j.jaap.2021.105115

    Article  CAS  Google Scholar 

  9. Li H, Li TH, Deng WB, Kong SY (2022) Preparation and adsorption properties of graphene-modified, pitch-based carbon foam composites. Polymers-Basel 14(20):4455. https://doi.org/10.3390/polym14204455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeng Y, Luo X, Yu KJ, Qian K (2019) EMI shielding performance of phenolic-based carbon foam modified with GO/SiO2 hybrid nanomaterials. Chem Phys Lett 715:166–172. https://doi.org/10.1016/j.cplett.2018.11.040

    Article  CAS  Google Scholar 

  11. Yu KJ, Zeng Y, Wang GL, Luo X, Li TT, Zhao JC, Qian K, Park CB (2019) r GO/Fe3O4 hybrid induced ultra-efficient EMI shielding performance of phenolic-based carbon foam. Rsc Adv 9(36):20643–20651. https://doi.org/10.1039/c9ra04244j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu HG, Li TH, Huang TT, Zhao X (2015) Effect of multi-walled carbon nanotube additive on the microstructure and properties of pitch-derived carbon foams. J Mater Sci 50:7583–7590. https://doi.org/10.1007/s10853-015-9314-4

    Article  CAS  Google Scholar 

  13. Khan M, Li TH, Zhao TK, Ali Z, Malik A, Khan A, Khan I, Ulah A, Jiao SS, Idrees M, Xiong CY (2017) Effect of multi walled carbon nanotubes and diamond nanoparticles on the structure and properties of carbon foams. Diam Relat Mater 79:119–126. https://doi.org/10.1016/j.diamond.2017.09.008

    Article  CAS  Google Scholar 

  14. Wang YM, Liu YL, Lin QL, Dong SH, Xiong L (2017) Preparation and properties of montmorillonite/carbon foam nanocomposites. Appl Clay Sci 140:31–37. https://doi.org/10.1016/j.clay.2017.01.030

    Article  CAS  Google Scholar 

  15. Yadav K, Bagal R, Parmar S, Patro TU, Abhyankar AC (2021) In situ coating of needle-like NiCo2O4 magnetic nanoparticles on lightweight reticulated vitreous carbon foam toward achieving improved electromagnetic wave absorption. Ind Eng Chem Res 60(39):14225–14238. https://doi.org/10.1021/acs.iecr.1c02636

    Article  CAS  Google Scholar 

  16. Liu HG, Wu SQ, You CY, Tian N, Li Y, Chopra N (2022) Fe3O4 nanoparticles decorated flexible carbon foam for efficient electromagnetic interference shielding. Ceram Int 48(13):19452–19459. https://doi.org/10.1016/j.ceramint.2022.03.246

    Article  CAS  Google Scholar 

  17. Li JW, Ding YQ, Yu N, Gao Q, Fan X, Wei X, Zhang GC, Ma ZL, He XH (2020) Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158:45–54. https://doi.org/10.1016/j.carbon.2019.11.075

    Article  CAS  Google Scholar 

  18. Chen XK, Yu WC, Ma L, Zhou SS, Liu XX (2021) Mechanical properties and thermal characteristics of different-density phenolic foams. J Therm Anal Calorim 144:393–401. https://doi.org/10.1007/s10973-020-10361-2

    Article  CAS  Google Scholar 

  19. Issaoui H, de Hoyos-Martinez PL, Pellerin V, Dourges MA, Deleuze H, Bourbigo S, Bouhtoury FCE (2021) Effect of catalysts and curing temperature on the properties of biosourced phenolic foams. ACS Sustain Chem Eng 9(18):6209–6223. https://doi.org/10.1021/acssuschemeng.0c08234

    Article  CAS  Google Scholar 

  20. Cheng JY, Li ZK, Yan HL, Lei ZP, Yan JC, Ren SB, Wang ZC, Kang SG, Shui HF (2023) Preparation and characterization of low-temperature coal tar toughened phenolic foams. J Fuel Chem Technol 51(6):748–756. https://doi.org/10.1016/S1872-5813(23)60072-0

    Article  CAS  Google Scholar 

  21. Kawamoto AM, Pardini LC, Diniz MF, Lourenço VL, Takahashi MFK (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Man 2:169–182. https://doi.org/10.5028/jatm.2010.02027610

    Article  CAS  Google Scholar 

  22. Wang SB, Luo RY, Ni YF (2010) Preparation and characterization of resin-derived carbon foams reinforced by hollow ceramic microspheres. Mat Sci Eng A-Struct 527(15):3392–3395. https://doi.org/10.1016/j.msea.2010.02.059

    Article  CAS  Google Scholar 

  23. Wang JF, Khan M, Hussain A, Khan I, Nawaz A, Ragab AH, Sayqal A, Lei TF, Zada A (2023) Carbon foam composites containing carbon nanotubes and graphene oxide as additives for enhanced mechanical, thermal, electrical and catalytic properties. J Mater Res Technol 24:608–622. https://doi.org/10.1016/j.jmrt.2023.03.056

    Article  CAS  Google Scholar 

  24. Guo X, Chen XH, Liu P, Zhou HL, Fu SL, Li W, Liu XK, Ma FC, Wu ZP (2021) Preparation and mechanical properties of copper matrix composites reinforced by carbon nanotubes and Al2O3. Adv Eng Mater 23(6):2001490. https://doi.org/10.1002/adem.202001490

    Article  CAS  Google Scholar 

  25. Sheinerman AG (2022) Mechanical properties of metal matrix composites with graphene and carbon nanotubes. Phys Met Metallogr+ 123(1):57–84. https://doi.org/10.1134/S0031918X22010124

    Article  CAS  Google Scholar 

  26. Gao FF, Tian W, Wang Z, Wang F (2020) Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials. Constr Build Mater 260:120452. https://doi.org/10.1016/j.conbuildmat.2020.120452

    Article  CAS  Google Scholar 

  27. Wang L, Zhao W, Zhao JW, Qiao W, Zhu GC, Xia ZP, Liu Y (2021) Super-high fraction of organic montmorillonite filled polyamide 6 composite foam: Morphologies, thermal and mechanical properties. Polym Advan Technol 32(2):544–552. https://doi.org/10.1002/pat.5108

    Article  CAS  Google Scholar 

  28. Al-Jumaili SK, Alkaron WA, Atshan MY (2023) Mechanical, thermal, and morphological properties of low-density polyethylene nanocomposites reinforced with montmorillonite: Fabrication and characterizations. Cogent Eng 10(1):2204550. https://doi.org/10.1080/23311916.2023.2204550

    Article  Google Scholar 

  29. Gou P, Ye L, Li CL, Zhao XW (2023) Formation of conductive network in urea-formaldehyde/carbon nanotube composite foams for electromagnetic shielding. Polym Int 72(8):711–719. https://doi.org/10.1002/pi.6528

    Article  CAS  Google Scholar 

  30. Song JW, Xu KJ, He J, Ye HJ, Xu LX (2023) Three-dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template. Polym Composite 44(5):2836–2845. https://doi.org/10.1002/pc.27284

    Article  CAS  Google Scholar 

  31. Chithra A, Wilson P, Vijayan S, Rajeev R, Prabhakaran K (2020) Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust. Ind Crop Prod 145:112076. https://doi.org/10.1016/j.indcrop.2019.112076

    Article  CAS  Google Scholar 

  32. Tang RB, Xu P, Dong JW, Gui HG, Zhang T, Ding YS, Murugadoss V, Naik N, Pan D, Huang MN, Guo ZH (2022) Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 188:492–502. https://doi.org/10.1016/j.carbon.2021.12.026

    Article  CAS  Google Scholar 

  33. Jin WW, Wang WK, Mazumdar S, Xu GZ, Zhang QQ (2023) Carbon foams with Fe-organic network-derived Fe3O4 for efficient electromagnetic shielding. Mater Chem Phys 304:127797. https://doi.org/10.1016/j.matchemphys.2023.127797

    Article  CAS  Google Scholar 

  34. Wang YZ, Song SP, Xu GZ, Wu SY, Zhong XY, Bai JF (2023) Study on preparation and electromagnetic shielding properties of GNs/NaCl/SCF composite carbon foam. Diam Relat Mater 139:110391. https://doi.org/10.1016/j.diamond.2023.110391

    Article  CAS  Google Scholar 

  35. Li WC, Feng L, Shi XL, Wang Y (2021) Mechanical and electromagnetic shielding properties of carbon foam. Adv Eng Mater 23(12):2100452. https://doi.org/10.1002/adem.202100452

    Article  CAS  Google Scholar 

  36. Patle VK, Mehta Y, Dwivedi N, Mondal DP, Srivastava AK, Kumar R (2022) Thermal insulating and fire-retardant lightweight carbon-slag composite foams towards absorption dominated electromagnetic interference shielding. Sustain Mater Techno 33:e00453. https://doi.org/10.1016/j.susmat.2022.e00453

    Article  CAS  Google Scholar 

  37. Guo WW, Zhao YY, Wang X, Cai W, Wang JL, Song L, Hu Y (2020) Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Compos Part B-Eng 192:107990. https://doi.org/10.1016/j.compositesb.2020.107990

    Article  CAS  Google Scholar 

  38. Jing H, Miao ZN, Zeng Z, Liu H, Zhou ST, Zou HW, Liang W (2021) Carbonization of graphene-doped isocyanate-based polyimide foams to achieve carbon foams with excellent electromagnetic interference shielding performance. Materials 14(24):7551. https://doi.org/10.3390/ma14247551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar R, Sharma A, Pandey A, Chaudhary A, Dwivedi N, Shafeeq MM, Mondal DP, Srivastava AK (2020) Lightweight carbon-red mud hybrid foam toward fire-resistant and efficient shield against electromagnetic interference. Sci Rep-uk 10(1):9913. https://doi.org/10.1038/s41598-020-66929-3

    Article  CAS  Google Scholar 

  40. Zhu S, Peng SP, Qiang Z, Ye CH, Zhu MF (2022) Cryogenic-environment resistant, highly elastic hybrid carbon foams for pressure sensing and electromagnetic interference shielding. Carbon 193:258–271. https://doi.org/10.1016/j.carbon.2022.03.027

    Article  CAS  Google Scholar 

  41. Qi FQ, Wang L, Zhang YL, Ma ZL, Qiu H, Gu JW (2021) Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater Today Phys 21:100512. https://doi.org/10.1016/j.mtphys.2021.100512

    Article  CAS  Google Scholar 

  42. Sheng XZ, Yun SH, Wang SL, Gao YS, Zuo XP, Miao X, Shi XT, Qin JB, Ma ZL, Zhang GC (2023) Highly heat-resistant and mechanically strong co-crosslinked polyimide/bismaleimide rigid foams with superior thermal insulation and flame resistance. Mater Today Phys 36:101154. https://doi.org/10.1016/j.mtphys.2023.101154

    Article  CAS  Google Scholar 

  43. Rostami-Tapeh-Esmaeil E, Shojaei S, Rodrigue D (2022) Mechanical and thermal properties of functionally graded polyolefin elastomer foams. Polymers-Basel 14(19):4124. https://doi.org/10.3390/polym14194124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li XX, Yan LW, Guo AR, Du HY, Hou F, Liu JC (2023) Lightweight porous silica-alumina ceramics with ultra-low thermal conductivity. Ceram Int 49(4):6479–6486. https://doi.org/10.1016/j.ceramint.2022.10.165

    Article  CAS  Google Scholar 

  45. Li JW, Lin J, Wang YG, Chu W, Liu F, Wang B (2022) Cross-linked and rigid polyimide composite foams with prominent fire resistant, thermal insulating, and wave-transparent properties. ACS Appl Polym Mater 4(10):6994–7003. https://doi.org/10.1021/acsapm.2c00931

    Article  CAS  Google Scholar 

  46. Wang H, Yan R, Cheng H, Zou MM, Wang H, Zheng K (2023) Hollow glass microspheres/phenolic syntactic foams with excellent mechanical and thermal insulate performance. Front Chem 11:1216706. https://doi.org/10.3389/fchem.2023.1216706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang CG, Cheng X, Chen BY, Wang JW, Dai Y, Situ X, Huang H (2022) Preparation of aerogel-like silica foam with the hollow-sphere-based 3D network skeleton by the cast-in situ method and ambient pressure drying. Nano Lett 22(23):9290–9296. https://doi.org/10.1021/acs.nanolett.2c02768

    Article  CAS  PubMed  Google Scholar 

  48. Chen YW, Zhan H, Wang JN (2021) A direct foaming approach for carbon nanotube aerogels with ultra-low thermal conductivity and high mechanical stability. Nanoscale 13(27):11878–11886. https://doi.org/10.1039/d1nr02690a

    Article  CAS  PubMed  Google Scholar 

  49. Painuly A, George BK, Prabhakaran K (2023) SiBOC foams from methylvinylborosiloxane using urea crystals as a pore template and ethylenediamine as a gelling agent. J Aust Ceram Soc 59(4):935–946. https://doi.org/10.1007/s41779-023-00886-8

    Article  CAS  Google Scholar 

  50. Wang L, Shi XT, Zhang JL, Zhang YL, Gu JW (2020) Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J Mater Sci Technol 52:119–126. https://doi.org/10.1016/j.jmst.2020.03.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by Shaanxi Provincial Science and Technology Activities Funding Program for Overseas Students (2021014), Shaanxi Provincial Department of Education Key Scientific Research Plan Collaborative Innovation Center Project (20JY027), and Key Research and Development Projects of Shaanxi Provincial Department of Science and Technology (2024NC-YBXM-247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Ethics declarations

Conflicts of interest

The authors declare that we have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, B., Su, B. et al. Carbon nanotubes and montmorillonite reinforced carbon foam composites containing hollow microspheres. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00727-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00727-z

Keywords

Navigation