Skip to main content
Log in

A study of thermal insulation properties and microstructure of ultra-light 3D-carbon foam via direct carbonization of polymer foam

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This paper describes the preparation of ultralight flexible carbon foam (FCF) by direct carbonization of commercial melamine foam (MF). The effect of carbonization temperature on microstructure characteristics and thermal properties in FCF were evaluated. The thermal conductivity of the samples at ambient temperature was measured using the heat flow tester and the thermal conductivity of the samples at various temperatures was measured using water flow plate method. The pore distribution and microstructure morphology of the MF sample and FCF samples were also measured by mercury intrusion porosimetry and SEM imaging, respectively. The results show that the 3D network architecture and the triangle fiber shape of the MF precursor were inherited by the resulting FCF samples despite of a great reduction in volume. The average pore diameter of FCF samples reaches a lowest value for carbonization temperature of 850 °C. The thermal conductivity of FCF samples is considered to be affected by the porosity characteristic of FCF samples. The higher pore diameter of FCF samples, the greater its thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O. Mesalhy, K. Lafdi, A. Elgafy, Carbon 44(10), 2080–2088 (2006)

    Article  CAS  Google Scholar 

  2. H. Liu, T. Li, Y. Shi, X. Zhao, J. Mater. Eng. Perform. 24(10), 4054–4059 (2015)

    Article  CAS  Google Scholar 

  3. F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Carbon 50(5), 1972–1980 (2012)

    Article  CAS  Google Scholar 

  4. E. Kang, Y.S. Jung, A.S. Cavanagh, G.H. Kim, S.M. George, A.C. Dillon, J.K. Kim, J. Lee, Adv. Funct. Mater. 21(13), 2430–2438 (2011)

    Article  CAS  Google Scholar 

  5. W. Li, S. Liu, J. Porous Mater. 19(5), 567–572 (2012)

    Article  CAS  Google Scholar 

  6. S. Chen, G. He, Q. Liu, F. Harnisch, Y. Zhou, Y. Chen, M. Hanif, S. Wang, X. Peng, H. Hou, U. Schroder, Energy Environ. Sci. 5(12), 9769–9772 (2012)

    Article  CAS  Google Scholar 

  7. L. Dimesso, C. Spanheimer, S. Jacke, W. Jaegermann, J. Power Sources 196(16), 6729–6734 (2011)

    Article  CAS  Google Scholar 

  8. L. Ma, Z. Nie, X. Xi, X. Xi, B. Chen, Y. Chen, J. Porous Mater. 20(3), 557–562 (2013)

    Article  CAS  Google Scholar 

  9. M. Ge, Z. Shen, W. Chi, H. Liu, Carbon 45(1), 141–145 (2007)

    Article  Google Scholar 

  10. Y. Bao, L. Zhan, C. Wang, Y. Wang, W. Qiao, L. Ling, Mater. Lett. 65(19–20), 3154–3156 (2011)

    Article  CAS  Google Scholar 

  11. T.Q. Li, C.Y. Wang, B.X. An, H. Wang, Carbon 43(9), 2030–2032 (2005)

    Article  CAS  Google Scholar 

  12. J. Li, C. Wang, G. Cheng, Y. Wang, L. Zhan, W. Qiao, L. Li, J. Porous Mater. 17(6), 685–691 (2010)

    Article  CAS  Google Scholar 

  13. A. Gul, M.F. Yardim, J. Porous Mater. 22(4), 851–857 (2015)

    Article  CAS  Google Scholar 

  14. W.Q. Li, H.B. Zhang, X. Xiong, F. Xiao, Mater. Sci. Eng. A 528(6), 2999–3002 (2011)

    Article  Google Scholar 

  15. J.M. Molina-Jordá, Carbon 103, 5–8 (2016)

    Article  Google Scholar 

  16. S. Lei, Q. Guo, J. Shi, L. Liu, Carbon 48(9), 2644–2646 (2010)

    Article  CAS  Google Scholar 

  17. S. Farhan, R.M. Wang, H. Jiang, N. Ul-Haq, J. Anal. Appl. Pyrolysis 110(1), 229–234 (2014)

    Article  CAS  Google Scholar 

  18. Z. Zheng, Q. Gao, J. Power Sources 196(3), 1615–1619 (2011)

    Article  CAS  Google Scholar 

  19. S. Sharma, R. Kamath, M. Madou, J. Anal. Appl. Pyrolysis 108(7), 12–18 (2014)

    Article  CAS  Google Scholar 

  20. X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 22(5), 617–621 (2010)

    Article  CAS  Google Scholar 

  21. S. Chen, G. He, H. Hu, S. Jin, Y. Zhou, Y. He, S. He, F. Zhao, H. Hou, Energy Environ. Sci. 6(8), 2435–2439 (2013)

    Article  CAS  Google Scholar 

  22. M. Wiener, G. Reichenauer, S. Braxmeier, Int. J. Thermophys. 30(4), 1372–1385 (2011)

    Article  Google Scholar 

  23. Y.L. He, T. Xie, Appl. Therm. Eng. 81, 28–50 (2015)

    Article  CAS  Google Scholar 

  24. G. Wei, L. Wang, C. Xu, X. Du, Y. Yang, Energy Build. 118, 226–231 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Primary Research & Development Plan of Jiangsu Province (BE2016104), Aeronautical Science Foundation of China (2016ZF52065), the National Key Research and Development Program of China (2016YFC0304302) and Funding of Jiangsu Innovation Program for Graduate Education (KYLX16_0343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Chen, Z., Wang, Y. et al. A study of thermal insulation properties and microstructure of ultra-light 3D-carbon foam via direct carbonization of polymer foam. J Porous Mater 25, 527–536 (2018). https://doi.org/10.1007/s10934-017-0465-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0465-3

Keywords

Navigation