Skip to main content
Log in

Porous carbon anodes from fluorinated polyimide for lithium-ion batteries

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g−1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g−1 at 25 mA g−1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  2. Wang L, Hu X (2018) Recent advances in porous carbon materials for electrochemical energy storage. Chem Asian J 13:1518–1529

    Article  CAS  PubMed  Google Scholar 

  3. Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7(23):1700530

    Article  Google Scholar 

  4. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    Article  CAS  PubMed  Google Scholar 

  5. Sun J, Ye L, Zhao X, Zhang P, Yang J (2023) Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: a review. Molecules 28:2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee YC, Jung SC (2022) A first-principles study on atomic-scale pore design of microporous carbon electrodes for lithium-ion batteries. Nanoscale Adv 4:5378–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dutta S, Bhaumik A, Wu KC-W (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  8. Shaker M, Ghazvini AAS, Qureshi FR, Riahifar R (2021) A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes; lithium-ion battery anode capacity prediction. Carbon Lett. https://doi.org/10.1007/s42823-020-00210-5

    Article  Google Scholar 

  9. Lin X, Khosravinia K, Hu X, Li J, Lu W (2021) Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Prog Energy Combust Sci 87:100953

    Article  Google Scholar 

  10. Tomaszewska A, Chu Z, Feng X, S. O’kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, (2019) Lithium-ion battery fast charging: a review. ETransportation 1:100011

    Article  Google Scholar 

  11. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  PubMed  Google Scholar 

  12. Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  CAS  PubMed  Google Scholar 

  13. Ohta N, Nishi Y, Morishita T, Tojo T, Inagaki M (2008) Preparation of microporous carbon films from fluorinated aromatic polyimides. Carbon 46:1350–1357

    Article  CAS  Google Scholar 

  14. Kim M, Gu MG, Jeong H, Song E, Jeon JW, Huh K-M, Kang P, Kim S-K, Kim BG (2020) Laser scribing of fluorinated polyimide films to generate microporous structures for high-performance micro-supercapacitor electrodes. ACS Appl Energy Mater 4:208–214

    Article  Google Scholar 

  15. Inagaki M, Ohta N, Hishiyama Y (2013) Aromatic polyimides as carbon precursors. Carbon 61:1–21

    Article  CAS  Google Scholar 

  16. Tan J, Chen Y, Huang J, Jiang L, Fei L, Sun W, Wu D, Zhang H, Liu Y (2023) Influence of diamine moieties on the gas permeation performances of polyimide: perspectives from experiment and simulation. J Polym Res 30:1–10

    Article  Google Scholar 

  17. Yerzhankyzy A, Wang Y, Ghanem BS, Puspasari T, Pinnau I (2022) Gas separation performance of solid-state in-situ thermally crosslinked 6FDA-based polyimides. J Membr Sci 641:119885

    Article  CAS  Google Scholar 

  18. Tian W-Q, Wu X-Y, Wang K-X, Jiang Y-M, Wang J-F, Chen J-S (2013) Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Adv 3:10823–10827

    Article  CAS  Google Scholar 

  19. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97:2781–2791

    Article  CAS  Google Scholar 

  20. Vander Wal RL, Tomasek AJ, Pamphlet MI, Taylor CD, Thompson WK (2004) Analysis of HRTEM images for carbon nanostructure quantification. J Nanoparticle Res 6:555–568

    Article  CAS  Google Scholar 

  21. Zhong L, Zhang W, Sun S, Zhao L, Jian W, He X, Xing Z, Shi Z, Chen Y, Alshareef HN (2023) Engineering of the crystalline lattice of hard carbon anodes toward practical potassium-ion batteries. Adv Funct Mater 33:2211872

    Article  CAS  Google Scholar 

  22. Popova A (2017) Crystallographic analysis of graphite by X-ray diffraction. Coke Chem 60:361–365

    Article  Google Scholar 

  23. Paul S, Samdarshi S (2011) A green precursor for carbon nanotube synthesis. New Carbon Mater 26:85–88

    Article  CAS  Google Scholar 

  24. Dresselhaus M, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108

    Article  CAS  Google Scholar 

  25. Jang JI (2013) New developments in photon and materials research. Nova Publishers, New York

    Google Scholar 

  26. Tian W, Li W, Yu W, Liu X (2017) A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines 8:163

    Article  PubMed Central  Google Scholar 

  27. Schuepfer DB, Badaczewski F, Guerra-Castro JM, Hofmann DM, Heiliger C, Smarsly B, Klar PJ (2020) Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon 161:359–372

    Article  CAS  Google Scholar 

  28. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674

    Article  CAS  Google Scholar 

  29. Kane S, Storer A, Xu W, Ryan C, Stadie NP (2022) Biochar as a renewable substitute for carbon black in lithium-ion battery electrodes. ACS Sustain Chem Eng 10:12226–12233

    Article  CAS  Google Scholar 

  30. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30:1705702

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) (grant funded by the Korea government (MSIT) (NRF-2021M2D2A1A02041482) and "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2023RIS-008). This was also supported by research funds of Jeonbuk National University in 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Kon Kim.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.S., Park, H. & Kim, SK. Porous carbon anodes from fluorinated polyimide for lithium-ion batteries. Carbon Lett. 34, 1039–1044 (2024). https://doi.org/10.1007/s42823-023-00657-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00657-2

Keywords

Navigation