Skip to main content
Log in

ZIF-8/CNFs/PANI composite as an electrochemical platform in trace-level nitrite sensing

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate frameworks (ZIFs) along with carbon nanofibers and polyaniline composite have been explored as an electrochemical sensing platform in nitrite measurement at trace level. Owing to their topology, high surface area and porous structure, these metal–organic frameworks (MOFs) find widespread utility in different application domains. Nitrites are widely used as preservatives in dairy, meat products, and packaged food stuffs. They form N-nitrosamines, which are potential carcinogens and cause detrimental health effects. These ZIF-based MOFs along with carbon nanofibers and polyaniline have emerged as an efficient electrochemical sensing material. The composite has been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and BET surface area studies. The electrochemical performance of the composite has been evaluated by forming as a thin film of composite on the surface of glassy carbon electrode and studying its impedance as well as electrochemical sensing behavior. The sensor exhibited good analytical response in nitrite measurement with a limit of detection of 8.1 µM. The developed sensing platform has been successfully applied to quantify the nitrite levels from water samples. The results obtained are in good agreement with the results of standard protocol.

Graphical abstract

Schematic representation of fabrication of ZIF-8/CNF/PANI composite-modified electrode and its application in electrochemical sensing of nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rao EP, Puttanna K (2000) Nitrates, agriculture and environment. Curr Sci 79(9):1163–1168

    CAS  Google Scholar 

  2. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90(1):1–10

    Article  CAS  PubMed  Google Scholar 

  3. Zhang W, Ge CY, Jin L, Yoon S, Kim W, Xu GR, Jang H (2021) Nickel nanoparticles incorporated Co, N co-doped carbon polyhedron derived from core-shell ZIF-8@ ZIF-67 for electrochemical sensing of nitrite. J Electroanal Chem 887:115163

    Article  CAS  Google Scholar 

  4. Palanisamy S, Thirumalraj B, Chen SM (2016) A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite. J Electroanal Chem 760:97–104

    Article  CAS  Google Scholar 

  5. Luo X, Pan J, Pan K, Yu Y, Zhong A, Wei S, Li X (2015) An electrochemical sensor for hydrazine and nitrite based on graphene–cobalt hexacyanoferrate nanocomposite: toward environment and food detection. J Electroanal Chem 745:80–87

    Article  CAS  Google Scholar 

  6. Haldorai Y, Choe SR, Huh YS, Han YK (2018) A composite consisting of microporous carbon and cobalt(III) oxide and prepared from zeolitic imidazolate framework-67 for voltammetric determination of ascorbic acid. MicrochimicaActa 185:1–10

    CAS  Google Scholar 

  7. Powlson DS, Addiscott TM (2005) Nitrogen in soils. Nitrates 2005:21–31

    Google Scholar 

  8. Swann PF (1975) The toxicology of nitrate, nitrite and n-nitrosocompounds. J Sci Food Agric 26:1761–1770

    Article  CAS  Google Scholar 

  9. Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54(5):785–803

    Article  CAS  PubMed  Google Scholar 

  10. Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, Lu ZL (2017) Methods for the detection and determination of nitrite and nitrate: a review. Talanta 165:709–720

    Article  CAS  PubMed  Google Scholar 

  11. Jayawardane BM, Wei S, McKelvie ID, Kolev SD (2014) Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem 86(15):7274–7279

    Article  CAS  PubMed  Google Scholar 

  12. Li T, Li Y, Zhang Y, Dong C, Shen Z, Wu A (2015) A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@ Au nanoparticles. Analyst 140(4):1076–1081

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wu J, Wang X, Lin Y, Zheng Y, Lin JM (2016) Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip. Talanta 154:73–79

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Wang J, Yang Y, Lu Y (2015) The determination of nitrate and nitrite in human urine and blood by high-performance liquid chromatography and cloud-point extraction. J Chromatogr Sci 53(7):1169–1177

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Pang S, He L, Nugen SR (2016) Highly sensitive and selective detection of nitrite ions using Fe3O4@ SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 85:726–733

    Article  CAS  PubMed  Google Scholar 

  16. Kalaycıoğlu Z, Erim FB (2016) Simultaneous determination of nitrate and nitrite in fish products with improved sensitivity by sample stacking-capillary electrophoresis. Food Anal Methods 9:706–711

    Article  Google Scholar 

  17. Liu YL, Kang N, Ke XB, Wang D, Ren L, Wang HJ (2016) A fluorescent nanoprobe based on metal-enhanced fluorescence combined with Förster resonance energy transfer for the trace detection of nitrite ions. RSC Adv 6(33):27395–27403

    Article  ADS  CAS  Google Scholar 

  18. Shariati-Rad M, Irandoust M, Niazi F (2015) A sensitive spectrofluorimetric method for the determination of nitrite in agricultural samples. Food Anal Methods 8:1691–1698

    Article  Google Scholar 

  19. Zhang S, Tang Y, Chen Y, Zheng J (2019) Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J Electroanal Chem 839:195–201

    Article  CAS  Google Scholar 

  20. Guidelli R, Pergola F, Raspi G (1972) Voltammetric behaviour of nitrite ion on platinum in neutral and weakly acidic media. Anal Chem 44(4):745–755

    Article  CAS  PubMed  Google Scholar 

  21. Yan MAO, Yu BAO, Dong-Xue HAN, Bing ZHAO (2018) Research progress on nitrite electrochemical sensor. Chin J Anal Chem 46(2):147–155

    Article  Google Scholar 

  22. Deka MJ, Chowdhury D, Nath BK (2022) Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett 32(5):1131–1149

    Article  Google Scholar 

  23. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32(5):1277–1285

    Article  Google Scholar 

  24. Manjushree SG, Adarakatti PS, Udayakumar V, Almalki AS (2022) Hexagonal cerium oxide decorated on β-Ni (OH)2 nanosheets stabilized by reduced graphene oxide for effective sensing of H2O2. Carbon Lett 2022:1–14

    Google Scholar 

  25. El Rhazi M, Majid S, Elbasri M, Salih FE, Oularbi L, Lafdi K (2018) Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int Nano Lett 8:79–99

    Article  Google Scholar 

  26. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  CAS  PubMed  Google Scholar 

  28. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2(40):16811–16831

    Article  CAS  Google Scholar 

  29. Jiang L, Wang H, Rao Z, Zhu J, Li G, Huang Q, Liu H (2022) In situ electrochemical reductive construction of metal oxide/metal–organic framework heterojunction nanoarrays for hydrogen peroxide sensing. J Colloid Interface Sci 622:871–879

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Du W, Bai YL, Xu J, Zhao H, Zhang L, Li X, Zhang J (2018) Advanced metal–organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources 402:281–295

    Article  CAS  Google Scholar 

  31. Ma W, Jiang Q, Yu P, Yang L, Mao L (2013) Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal Chem 85(15):7550–7557

    Article  CAS  PubMed  Google Scholar 

  32. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6(5):1887–1899

    Article  CAS  Google Scholar 

  33. Bhattacharjee S, Jang MS, Kwon HJ, Ahn WS (2014) Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal Surv Asia 18:101–127

    Article  CAS  Google Scholar 

  34. Li X, Ping J, Ying Y (2019) Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends Anal Chem 113:1–12

    Article  CAS  Google Scholar 

  35. Yang Z, Zhou X, Yin Y, Xue H, Fang W (2022) Metal–organic framework derived rod-like Co@ carbon for electrochemical detection of nitrite. J Alloy Compd 911:164915

    Article  CAS  Google Scholar 

  36. Saeb E, Asadpour-Zeynali K (2022) A novel ZIF-8@ ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta 417:140278

    Article  CAS  Google Scholar 

  37. Xu Z, Dai S, Wang Y, Chen Y, Cheng YH, Peng S (2022) Magnetic relaxation switching assay based on three-dimensional assembly of Fe3O4@ ZIF-8 for detection of cadmium ions. RSC Adv 12(38):25041–25047

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malepe L, Ndinteh DT, Ndungu P, Mamo MA (2022) Selective detection of methanol vapour from a multicomponent gas mixture using a CNPs/ZnO@ ZIF-8 based room temperature solid-state sensor. RSC Adv 12(42):27094–27108

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim KH (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129

    Article  CAS  Google Scholar 

  40. Jang J, Bae J, Choi M, Yoon SH (2005) Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon 43(13):2730–2736

    Article  CAS  Google Scholar 

  41. Yanilmaz M, Dirican M, Asiri AM, Zhang X (2019) Flexible polyaniline–carbon nanofiber supercapacitor electrodes. J Energy Storage 24:100766

    Article  Google Scholar 

  42. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Zhao X, Liu X, Dong C (2020) Enhanced chemical sensing for Cu2+ based on composites of ZIF-8 with small molecules. RSC Adv 10(24):13998–14006

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Z, Wei C, Gong Y, Lv J, Xu Z, Hu J, Du L (2017) Preparation and electrochemical performances of cellulose nanofiber/graphene nanosheet/polyaniline composite film via in-situ polymerization. Int J Electrochem Sci 12(7):6662–6675

    Article  CAS  Google Scholar 

  45. Ellis JE, Zeng Z, Hwang SI, Li S, Luo TY, Burkert SC, Star A (2019) Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites. Chem Sci 10(3):737–742

    Article  CAS  PubMed  Google Scholar 

  46. Paul A, Vyas G, Paul P, Srivastava DN (2018) Gold-nanoparticle-encapsulated ZIF-8 for a mediator-free enzymatic glucose sensor by amperometry. ACS Appl Nano Mater 1(7):3600–3607

    Article  CAS  Google Scholar 

  47. Yang Y, Ge L, Rudolph V, Zhu Z (2014) In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans 43(19):7028–7036

    Article  CAS  PubMed  Google Scholar 

  48. Jin YF, Ge CY, Li XB, Zhang M, Xu GR, Li DH (2018) A sensitive electrochemical sensor based on ZIF-8–acetylene black–chitosan nanocomposites for rutin detection. RSC Adv 8(57):32740–32746

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian F, Cerro AM, Mosier AM, Wayment-Steele HK, Shine RS, Park A, Benz L (2014) Surface and stability characterization of a nanoporous ZIF-8 thin film. J Phys Chem C 118(26):14449–14456

    Article  CAS  Google Scholar 

  50. Fu H, Ou P, Zhu J, Song P, Yang J, Wu Y (2019) Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. ACS Appl Nano Mater 2(12):7626–7636

    Article  CAS  Google Scholar 

  51. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3):498–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195(9):3041–3045

    Article  CAS  Google Scholar 

  53. Cui Z, Guo CX, Yuan W, Li CM (2012) In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer-and pseudo-capacitance for supercapacitors. Phys Chem Chem Phys 14(37):12823–12828

    Article  CAS  PubMed  Google Scholar 

  54. Wang P, Wang M, Zhou F, Yang G, Qu L, Miao X (2017) Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem Commun 81:74–78

    Article  CAS  Google Scholar 

  55. Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11(3):954–959

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Bard AJ, Faulkner LR, White HS (2022) Electrochemical methods: fundamentals and applications. Wiley, London

    Google Scholar 

  57. Nasraoui S, Al-Hamry A, Teixeira PR, Ameur S, Paterno LG, Ali MB, Kanoun O (2021) Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. J Electroanal Chem 880:114893

    Article  CAS  Google Scholar 

  58. Piela B, Wrona PK (2002) Oxidation of nitrites on solid electrodes: I. Determination of the reaction mechanism on the pure electrode surface. J Electrochem Soc 149(2):E55

    Article  CAS  Google Scholar 

  59. Suma BP, Pandurangappa M (2020) Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples. J Solid State Electrochem 24:69–79

    Article  Google Scholar 

  60. Lipps WC, Baxter TE, Braun-Howland EB, American Public Health Association & American Water Works Association (eds) (2023) Standard methods for the examination of water and wastewater. American public health association

  61. Salagare S, ShivappaAdarakatti P, Venkataramanappa Y (2022) Designing and construction of carboxyl functionalised MWCNTs/Co-MOFs-based electrochemical sensor for the sensitive detection of nitrite. Int J Environ Anal Chem 102(17):5301–5320

    Article  CAS  Google Scholar 

  62. Wang YC, Chen YC, Chuang WS, Li JH, Wang YS, Chuang CH, Kung CW (2020) Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Appl Nano Mater 3(9):9440–9448

    Article  CAS  Google Scholar 

  63. Lete C, Chelu M, Marin M, Mihaiu S, Preda S, Anastasescu M, Gartner M (2020) Nitrite electrochemical sensing platform based on tin oxide films. Sens Actuators B Chem 316:128102

    Article  CAS  Google Scholar 

  64. Salagare S, Adarakatti PS, Yarradoddappa V (2021) Facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode for selective electrochemical determination of nitrite. Carbon Lett 31(6):1273–1286

    Article  Google Scholar 

  65. Hyusein C, Tsakova V (2023) Nitrate detection at Pd–Cu-modified carbon screen printed electrodes. J Electroanal Chem 930:117172

    Article  CAS  Google Scholar 

  66. Gao F, Teng H, Song J, Xu G, Luo X (2020) A flexible and highly sensitive nitrite sensor enabled by interconnected 3D porous polyaniline/carbon nanotube conductive hydrogels. Anal Methods 12(5):604–610

    Article  CAS  Google Scholar 

  67. Patella B, Russo RR, O’Riordan A, Aiello G, Sunseri C, Inguanta R (2021) Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water. Talanta 221:121643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from 1) DST-SERB, Govt. of India New Delhi, India and award of fellowship to SBP. 2) Vision Group on Science & Technology (VGST), Government of Karnataka, Bengaluru and award of fellowship to SKM. Authors thank Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru for recording XPS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandurangappa Malingappa.

Ethics declarations

Conflict of interest

Authors declare there is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 879 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patri, S.B., Karekuladh, S.M. & Malingappa, P. ZIF-8/CNFs/PANI composite as an electrochemical platform in trace-level nitrite sensing. Carbon Lett. 34, 421–435 (2024). https://doi.org/10.1007/s42823-023-00648-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00648-3

Keywords

Navigation