Skip to main content

Advertisement

Log in

Facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode for selective electrochemical determination of nitrite

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This work describes the facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite through a simple glycol reduction method. The silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode has been validated as a perceptive electrochemical sensing podium towards nitrite. The morphology of the prepared nanocomposite has been characterized via specific spectroscopic and electrochemical techniques. The sensor exhibits a notable enhancement in the cyclic voltammetric response to nitrite oxidation at an ideal peak potential of 0.76 V in pH 6.0 acetate buffer. Under optimum conditions of nitrite directly expanded with their concentration in the range from 30 to 1400 μM with a detection limit of 14 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the electronic supplementary information of this article.

References

  1. Caballero B, Trugo LC, Finglas PM (2003) Encyclopedia of food sciences and nutrition. Academic, London

    Google Scholar 

  2. Dennis M, Key P, Papworth T, Pointer M, Massey R (1990) The determination of nitrate and nitrite in cured meat by HPLC/UV. Food Addit Contam 7(4):455–461

    Article  CAS  Google Scholar 

  3. Coleman D, White RE, Hobbs D (1995) A parallel-plate electrochemical reactor model for the destruction of nitrate and nitrite in alkaline waste solutions. J Electrochem Soc 142(4):1152

    Article  CAS  Google Scholar 

  4. Reinik M, Tamme T, Roasto M (1990) Naturally occurring nitrates and nitrites in foods. In: Gilbert J, Şenyuv H (eds) Bioactive compounds in foods. Wiley, Hoboken, pp 225–253

    Google Scholar 

  5. WHO (2011) Nitrite in drinking-water. Background document for development of WHO Guidelines for drinking-water quality. World Health Organization (WHO/SDE/WSH/0701/16/Rev/1), Geneva

  6. Chan TY (2011) Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicol Lett 200(1–2):107–108

    Article  CAS  Google Scholar 

  7. Nordenberg T (1998) Heading off migraine pain. FDA Consum 32:18–25

    CAS  Google Scholar 

  8. Jiang R, Paik DC, Hankinson JL, Barr RG (2007) Cured meat consumption, lung function, and chronic obstructive pulmonary disease among United States adults. Am J Respir Crit Care Med 175(8):798–804

    Article  Google Scholar 

  9. Jakszyn P, González CA (2006) Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol WJG 12(27):4296

    Article  CAS  Google Scholar 

  10. Najm I, Trussell RR (2001) NDMA formation in water and wastewater. J Am Water Works Ass 93(2):92–99

    Article  Google Scholar 

  11. Otsuka Y, Nakatani N, Takahashi T, Kozaki D, Mori M, Tanaka K (2016) The simultaneous determination of silicic, boric and carbonic acids in natural water via ion-exclusion chromatography with a charged aerosol detector. Separations 3(1):9

    Article  Google Scholar 

  12. Filik H, Giray D, Ceylan B, Apak R (2011) A novel fiber optic spectrophotometric determination of nitrite using Safranin O and cloud point extraction. Talanta 85(4):1818–1824

    Article  CAS  Google Scholar 

  13. Zhang D, Ma H, Chen Y, Pang H, Yu Y (2013) Amperometric detection of nitrite based on Dawson-type vanodotungstophosphate and carbon nanotubes. Anal Chim Acta 792:35–44

    Article  CAS  Google Scholar 

  14. Wen Z-H, Kang T-F (2004) Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta 62(2):351–355

    Article  CAS  Google Scholar 

  15. Guo DJ, Li HL (2005) Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43(6):1259–1264

    Article  CAS  Google Scholar 

  16. Xiao F, Liu L, Li J, Zeng J, Zeng B (2008) Electrocatalytic oxidation and voltammetric determination of nitrite on hydrophobic ionic liquid‐carbon nanotube gel‐chitosan composite modified electrodes. Electroanalysis 20(18):2047–2054

  17. Šebková S, Navratil T, Kopanica M (2004) Silver composite electrode for voltammetric determination of halogenides. Anal Lett 37(4):603–628

    Article  Google Scholar 

  18. Zhang Y, Yin J, Wang K, Chen P, Ji L (2013) Electrocatalysis and detection of nitrite on a polyaniline-Cu nanocomposite-modified glassy carbon electrode. J Appl Polym Sci 128(5):2971–2976

    Article  CAS  Google Scholar 

  19. Sun P, Wang C, Zhou X, Cheng P, Shimanoe K, Lu G, Yamazoe N (2014) Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gas sensing properties. Sens Actuators B Chem 193:616–622

    Article  CAS  Google Scholar 

  20. Tsai Y-T, Chang S-J, Ji L-W, Hsiao Y-J, Tang I-T, Lu H-Y, Chu Y-L (2018) High sensitivity of NO gas sensors based on novel Ag-doped ZnO nanoflowers enhanced with a UV light-emitting diode. ACS Omega 3(10):13798–13807

    Article  CAS  Google Scholar 

  21. Wang J, Wei L, Zhang L, Zhang J, Wei H, Jiang C, Zhang Y (2012) Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature. J Mater Chem 22(37):20038–20047

    Article  CAS  Google Scholar 

  22. Mirzaei A, Kim HW, Kim SS, Neri G (2019) Nanostructured semiconducting metal oxide gas sensors for acetaldehyde detection. Chemosensors 7(4):56

    Article  CAS  Google Scholar 

  23. Su P-G, Yang L-Y (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens Actuators B Chem 223:202–208

    Article  CAS  Google Scholar 

  24. Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N, Choopun S (2008) Ethanol sensor based on ZnO and Au-doped ZnO nanowires. Ceram Int 34(4):823–826

    Article  CAS  Google Scholar 

  25. Zhang J, Liu W, Wang B, Liu J (2018) Research progress of metal-organic frameworks in environmental chemistry. Sci Sin Chim 48(3):231–242

    Article  Google Scholar 

  26. Kumar M, Negi K, Umar A, Chauhan M (2021) Photocatalytic and fluorescent chemical sensing applications of La-doped ZnO nanoparticles. Chem Pap 75(4):1555–1566

    Article  CAS  Google Scholar 

  27. Xu M, Li Q, Ma Y, Fan H (2014) Ni-doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors. Sens Actuators B Chem 199:403–409

    Article  CAS  Google Scholar 

  28. Dar G, Umar A, Zaidi SA, Baskoutas S, Hwang S, Abaker M, Al-Hajry A, Al-Sayari S (2012) Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils. Talanta 89:155–161

    Article  CAS  Google Scholar 

  29. Karaduman I, Er E, Çelikkan H, Erk N, Acar S (2017) Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J Alloy Compd 722:569–578

    Article  CAS  Google Scholar 

  30. Yan H, Song P, Zhang S, Zhang J, Yang Z, Wang Q (2016) A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram Int 42(7):9327–9331

    Article  CAS  Google Scholar 

  31. Zhang Y, Nie J, Wei H, Xu H, Wang Q, Cong Y, Tao J, Chu L, Zhou Y, Wu X (2018) Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sens Actuators B Chem 258:1107–1116

    Article  CAS  Google Scholar 

  32. Shivakumar M, Nagashree K, Manjappa S, Dharmaprakash M (2017) Electrochemical detection of nitrite using glassy carbon electrode modified with silver nanospheres (AgNS) obtained by green synthesis using pre-hydrolysed liquor. Electroanalysis 29(5):1434–1442

    Article  CAS  Google Scholar 

  33. Sonkar PK, Ganesan V (2015) Synthesis and characterization of silver nanoparticle-anchored amine-functionalized mesoporous silica for electrocatalytic determination of nitrite. J Solid State Electrochem 19(7):2107–2115

    Article  CAS  Google Scholar 

  34. Manjari G, Saran S, Radhakrishanan S, Rameshkumar P, Pandikumar A, Devipriya SP (2020) Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J Environ Manage 262:110282

    Article  CAS  Google Scholar 

  35. Xiang Q, Meng G, Zhang Y, Xu J, Xu P, Pan Q, Yu W (2010) Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens Actuators B Chem 143(2):635–640

    Article  CAS  Google Scholar 

  36. Liu S, Zhu H, Yang J (2017) A phylogenetic perspective on biogeographical divergence of the flora in Yunnan, Southwestern China. Sci Rep 7(1):1–10

    Google Scholar 

  37. Aoki K, Okamoto T, Kaneko H, Nozaki K, Negishi A (1989) Applicability of graphite reinforcement carbon used as the lead of a mechanical pencil to voltammetric electrodes. J Electroanal Chem Interfacial Electrochem 263(2):323–331

    Article  CAS  Google Scholar 

  38. David IG, Bizgan A-MC, Popa DE, Buleandra M, Moldovan Z, Badea IA, Tekiner TA, Basaga H, Ciucu AA (2015) Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode. Food Chem 173:1059–1065

    Article  CAS  Google Scholar 

  39. Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC, Bohara RA (2019) Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep 17:71–80

    Google Scholar 

  40. Azam A, Ahmed F, Arshi N, Chaman M, Naqvi A (2010) Formation and characterization of ZnO nanopowder synthesized by sol–gel method. J Alloy Compd 496(1–2):399–402

    Article  CAS  Google Scholar 

  41. Wang Z, Li H, Tang F, Ma J, Zhou X (2018) A facile approach for the preparation of nano-size zinc oxide in water/glycerol with extremely concentrated zinc sources. Nanoscale Res Lett 13(1):1–9

    Google Scholar 

  42. Henglein A, Mulvaney P, Linnert T (1991) Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss 92:31–44

    Article  CAS  Google Scholar 

  43. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108(37):13957–13962

    Article  CAS  Google Scholar 

  44. Chauhan J, Mehto VR, Tiwari T (2019) Chemical synthesis and study of silver nanoparticles. Int J Nanomater Nanostruct 5(1):12–17

    Google Scholar 

  45. Peng F, Zhu H, Wang H, Yu H (2007) Preparation of Ag-sensitized ZnO and its photocatalytic performance under simulated solar light. Korean J Chem Eng 24(6):1022–1026

    Article  CAS  Google Scholar 

  46. Zhang K-X, Yao C-B, Wen X, Li Q-H, Sun W-J (2018) Ultrafast nonlinear optical properties and carrier dynamics of silver nanoparticle-decorated ZnO nanowires. RSC Adv 8(46):26133–26143

    Article  CAS  Google Scholar 

  47. Hower P, Gupta T (1979) A barrier model for ZnO varistors. J Appl Phys 50(7):4847–4855

    Article  CAS  Google Scholar 

  48. Wahab R, Ansari S, Kim Y, Seo H, Kim G, Khang G, Shin H-S (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42(9):1640–1648

    Article  CAS  Google Scholar 

  49. Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications. Nanoscale 5(16):7552–7557

    Article  CAS  Google Scholar 

  50. Nagaraju G, Prashanth S, Shastri M, Yathish K, Anupama C, Rangappa D (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater Res Bull 94:54–63

    Article  CAS  Google Scholar 

  51. Shah A, Manikandan E, Ahmed MB, Ganesan V (2013) Enhanced bioactivity of Ag/ZnO nanorods—a comparative antibacterial study. J Nanomed Nanotechol 4 (1)

  52. Meepun N, Siriket S, Dejmanee S (2012) Adsorptive stripping voltammetry for determination of cadmium in the presence of cupferron on a nafion-coated bismuth film electrode. Int J Electrochem Sci 7:10582–10591

    CAS  Google Scholar 

  53. Radulescu M-C, Chira A, Radulescu M, Bucur B, Bucur MP, Radu GL (2010) Determination of silver (i) by differential pulse voltammetry using a glassy carbon electrode modified with synthesized N-(2-Aminoethyl)-4, 4’-Bipyridine. Sensors 10(12):11340–11351

    Article  CAS  Google Scholar 

  54. Dağcı K, Alanyalıoğlu M (2016) Preparation of free-standing and flexible graphene/Ag nanoparticles/poly (pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl Mater Interfaces 8(4):2713–2722

    Article  Google Scholar 

  55. Ning D, Zhang H, Zheng J (2014) Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem 717:29–33

    Article  Google Scholar 

  56. Ramachandran K, Kalpana D, Sathishkumar Y, Lee YS, Ravichandran K (2016) A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J Ind Eng Chem 35:29–35

    Article  CAS  Google Scholar 

  57. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2(4):933–943

    Article  CAS  Google Scholar 

  58. Pal M, Ganesan V (2010) Electrochemical determination of nitrite using silver nanoparticles modified electrode. Analyst 135(10):2711–2716

    Article  CAS  Google Scholar 

  59. Šljukić B, Banks CE, Crossley A, Compton RG (2007) Lead (IV) oxide–graphite composite electrodes: application to sensing of ammonia, nitrite and phenols. Anal Chim Acta 587(2):240–246

    Article  Google Scholar 

  60. Yao Z, Yang X, Wu F, Wu W, Wu F (2016) Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium (IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchim Acta 183(10):2799–2806

    Article  CAS  Google Scholar 

  61. Wang Y, Laborda E, Compton RG (2012) Electrochemical oxidation of nitrite: kinetic, mechanistic and analytical study by square wave voltammetry. J Electroanal Chem 670:56–61

    Article  CAS  Google Scholar 

  62. Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens Actuators B Chem 143(2):539–546

    Article  CAS  Google Scholar 

  63. Piela B, Wrona PK (2002) Oxidation of nitrites on solid electrodes: I Determination of the reaction mechanism on the pure electrode surface. J Electrochem Soc 149(2):E55

    Article  CAS  Google Scholar 

  64. Suma B, Adarakatti PS, Kempahanumakkagari SK, Malingappa P (2019) A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples. Mater Chem Phys 229:269–278

    Article  CAS  Google Scholar 

  65. Ramachandran R, Zhao C, Luo D, Wang K, Wang F (2018) Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochim Acta 267:170–180

    Article  CAS  Google Scholar 

  66. Salagare S, Shivappa Adarakatti P, Venkataramanappa Y (2020) Designing and construction of carboxyl functionalised MWCNTs/Co-MOFs-based electrochemical sensor for the sensitive detection of nitrite. Int J Environ Anal Chem 1–20

  67. Zhou L, Wang J-P, Gai L, Li D-J, Li Y-B (2013) An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk. Sens Actuators B Chem 181:65–70

    Article  CAS  Google Scholar 

  68. Patri SB, Adarakatti PS, Malingappa P (2019) Silver nanoparticles-chitosan composite embedded graphite screen-printed electrodes as a novel electrochemical platform in the measurement of trace level nitrite: application to milk powder samples. Curr Anal Chem 15(1):56–65

    Article  CAS  Google Scholar 

  69. Zhou B, Liang L-M, Yao J (2014) Effects of isomorphous substitution of a coordination polymer on the properties and its application in electrochemical sensing. J Solid State Chem 215:109–113

    Article  CAS  Google Scholar 

  70. Rahim A, Santos LS, Barros SB, Kubota LT, Landers R, Gushikem Y (2014) Electrochemical detection of nitrite in meat and water samples using a mesoporous carbon ceramic SiO2/C electrode modified with in situ generated manganese (II) phthalocyanine. Electroanalysis 26(3):541–547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Sri. A.V.S. Murthy, honorary secretary, Rashtreeya Sikshana Samiti Trust, Bangalore, and Dr. Snehalatha G Nadiger, Principal, NMKRV College for Women, Bangalore for their continuous support and encouragement.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramanappa Yarradoddappa.

Ethics declarations

Conflict of interest

Shridevi Salagare declares that she has no conflict of interest. Prashanth S. Adarakatti declares that he has no conflict of interest. Yarradoddappa Venkataramanappa declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

A statement regarding informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 234 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salagare, S., Adarakatti, P.S. & Yarradoddappa, V. Facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode for selective electrochemical determination of nitrite. Carbon Lett. 31, 1273–1286 (2021). https://doi.org/10.1007/s42823-021-00251-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00251-4

Keywords

Navigation