Skip to main content

Advertisement

Log in

Synthesis, applications in therapeutics, and bioimaging of traditional Chinese medicine-derived carbon dots

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) are a novel type of fluorescent nanoparticles with a particle size smaller than 10 nm. They possess several advantageous properties, including excellent biocompatibility, light stability, water solubility, and low toxicity. CDs have been widely researched in recent years. As a treasure of ancient Chinese science, traditional Chinese medicine (TCM) is rich in various active ingredients and has a variety of pharmacodynamic effects, which have been used for thousands of years. TCM-CDs prepared with TCM as carbon source can create some special functions and then may play a greater medicinal value. The purpose of this review was to engage in an in-depth conversation about the use of TCM-CDs in medical therapy and bioimaging. Firstly, this study provides a comprehensive exploration of different synthesis methods for TCM-CDs, comparing their respective advantages and disadvantages. Subsequently, the intrinsic pharmacological activity of TCM-CDs, encompassing antibacterial, hypoglycemic, hemostatic, anticancer, and anti-inflammatory effects, is mainly discussed, alongside their underlying mechanisms of action. Additionally, investigations into in vitro imaging of diverse cell types and the distribution and uptake of TCM-CDs under in vivo imaging guidance are presented. Finally, the significance of TCM-CD research, key challenges and issues within this field, and future directions for development are summarized and outlined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All relevant data from the study are available within the article.

Abbreviations

CDs:

Carbon dots

TCM:

Traditional Chinese medicine

PL:

Photoluminescence

QY:

Quantum yield

E-CDs:

Ethanol papaya CDs

W-CDs:

Water papaya CDs

CP-CDs:

Codonopsis pilosula-derived CDs

M-CDs:

Mint CDs

O-CDs:

Onion CDs

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

CFC:

Charred Fructus Crataegi

JSX-CDs:

Jiao Sanxian-derived carbon dots

PTC-CDs:

Pollen Typhae Carbonisata-derived CDs

JMC-CDs:

Junci Medulla Carbonisata-derived CDs

AFI:

Aurantii Fructus Immaturus

PLR:

Pueraria lobata root

MSCs:

Mulberry silkworm cocoons

GCDs:

Ginger carbon dots

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

N-CDs:

Nitrogen-doped CDs

DPPH:

1,1-Diphenyl-2-pyridylhydrazide

Gly-CDs:

Glycyrrhizic acid CDs

PRRSV:

Porcine reproductive and respiratory syndrome virus

PRV:

Pseudorabies virus

PEDV:

Porcine epidemic diarrhea virus

CCM-CDs:

Curcumin CDs

ISGs:

Interferon-stimulating genes

mPD:

m-Phenylenediamine

CR:

Congo fruit

References

  1. Jadidi Kouhbanani MA, Mosleh-Shirazi S, Beheshtkhoo N, Kasaee SR, Nekouian S, Alshehery S, Kamyab H, Chelliapan S, Ali MA, Amani AM (2023) Investigation through the antimicrobial activity of electrospun PCL nanofiber mats with green synthesized Ag–Fe nanoparticles. J Drug Deliv Sci Technol 85:104541

    Article  CAS  Google Scholar 

  2. Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, Hasan M, Yadav KK, Khorami M, Farajnezhad M, Nouri J (2023) Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: a review of their antimicrobial properties. Chemosphere 335:139103

    Article  CAS  PubMed  Google Scholar 

  3. Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, Talat M, Hasan SH (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H(2)O(2) and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156

    Article  CAS  PubMed  Google Scholar 

  4. Chenghao L, Yamin L, Bin L, Ulla S, Xianyan R, Yaping S (2022) Toward high-performance and functionalized carbon dots: strategies, features, and prospects. Prog Chem 34:499

    Google Scholar 

  5. Huang Q, Li Q, Chen Y, Tong L, Lin X, Zhu J, Tong Q (2018) High quantum yield nitrogen-doped carbon dots: green synthesis and application as “off-on” fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sens Actuators B Chem 276:82–88

    Article  CAS  Google Scholar 

  6. Ben-Zichri S, Rajendran S, Bhunia SK, Jelinek R (2022) Resveratrol carbon dots disrupt mitochondrial function in cancer cells. Bioconjug Chem 33(9):1663–1671

    Article  CAS  PubMed  Google Scholar 

  7. Mosleh-Shirazi S, Kasaee SR, Dehghani F, Kamyab H, Kirpichnikova I, Chelliapan S, Firuzyar T, Akhtari M, Amani AM (2023) Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceram Int 49(7):11293–11301

    Article  CAS  Google Scholar 

  8. Tao J, Zou H, Liao X, Lu X, Cao J, Pan J, Li C, Zheng Y (2022) Fabrication of FA/HA-functionalized carbon dots for human breast cancer cell targeted imaging. Photodiagn Photodyn Ther 40:103099

    Article  CAS  Google Scholar 

  9. Li S, Jiang J, Yan Y, Wang P, Huang G, Kim NH, Lee JH, He D (2018) Red, green, and blue fluorescent folate-receptor-targeting carbon dots for cervical cancer cellular and tissue imaging. Mater Sci Eng C Mater Biol Appl 93:1054–1063

    Article  CAS  PubMed  Google Scholar 

  10. Bhunia SK, Maity AR, Nandi S, Stepensky D, Jelinek R (2016) Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. ChemBioChem 17(7):614–619

    Article  CAS  PubMed  Google Scholar 

  11. Rao C, Khan S, Verma NC, Nandi CK (2017) Labelling proteins with carbon nanodots. ChemBioChem 18(24):2385–2389

    Article  CAS  PubMed  Google Scholar 

  12. Unnikrishnan B, Wu RS, Wei SC, Huang CC, Chang HT (2020) Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5(20):11248–11261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gong X, Wang Z, Zhang L, Dong W, Wang R, Liu Y, Song S, Hu Q, Du F, Shuang S, Dong C (2022) A novel carbon-nanodots-based theranostic nano-drug delivery system for mitochondria-targeted imaging and glutathione-activated delivering camptothecin. Colloids Surf B Biointerfaces 218:112712

    Article  CAS  PubMed  Google Scholar 

  14. Wei J, Zhang X, Mugo SM, Zhang Q (2022) A portable sweat sensor based on carbon quantum dots for multiplex detection of cardiovascular health biomarkers. Anal Chem 94(37):12772–12780

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Yuan N, Jiang D, Lei Q, Liu B, Tang W, Row KH, Qiu H (2021) Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. Chin Chem Lett 32(11):3398–3401

    Article  CAS  Google Scholar 

  16. Egorova MN, Tomskaya AE, Kapitonov AN, Alekseev AA, Smagulova SA (2018) Hydrothermal synthesis of luminescent carbon dots from glucose and birch bark soot. J Struct Chem 59(4):780–785

    Article  CAS  Google Scholar 

  17. Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL (2022) Chinese medicinal herb-derived carbon dots for common diseases: efficacies and potential mechanisms. Front Pharmacol 13:815479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Yu S-H (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19(7):382–393

    Article  CAS  Google Scholar 

  19. Wang Z, Liao H, Wu H, Wang B, Zhao H, Tan M (2015) Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Anal Methods 7(20):8911–8917

    Article  CAS  Google Scholar 

  20. Liu J, Lu S, Tang Q, Zhang K, Yu W, Sun H, Yang B (2017) One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 9(21):7135–7142

    Article  CAS  PubMed  Google Scholar 

  21. Cui F, Ye Y, Ping J, Sun X (2020) Carbon dots: current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 156:112085

    Article  CAS  PubMed  Google Scholar 

  22. Dong X, Liang W, Meziani MJ, Sun YP, Yang L (2020) Carbon dots as potent antimicrobial agents. Theranostics 10(2):671–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang S, Sun J, Li X, Zhou W, Wang Z, He P, Ding G, Xie X, Kang Z, Jiang M (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2(23):8660–8667

    Article  CAS  Google Scholar 

  24. Miao R, Meng Q, Wang C, Yuan W (2022) Bibliometric analysis of network pharmacology in traditional Chinese medicine. Evid Based Complement Altern Med 2022:1583773

    Article  Google Scholar 

  25. Zhang Y, Wang S, Lu F, Zhang M, Kong H, Cheng J, Luo J, Zhao Y, Qu H (2021) The neuroprotective effect of pretreatment with carbon dots from Crinis Carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury. J Nanobiotechnol 19(1):257

    Article  CAS  Google Scholar 

  26. Wu D, Huang X, Deng X, Wang K, Liu Q (2013) Preparation of photoluminescent carbon nanodots by traditional Chinese medicine and application as a probe for Hg2+. Anal Methods 5(12):3023–3027

    Article  CAS  Google Scholar 

  27. Chen J, Wang Y, Wang L, Liu M, Fang L, Chu P, Gao C, Chen D, Ren D, Zhang J (2023) Multi-applications of carbon dots and polydopamine-coated carbon dots for Fe(3+) detection, bioimaging, dopamine assay and photothermal therapy. Discov Nano 18(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J (2015) Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sens Actuators B Chem 214:29–35

    Article  CAS  Google Scholar 

  29. Zuo G, Xie A, Li J, Su T, Pan X, Dong W (2017) Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection. J Phys Chem C 121(47):26558–26565

    Article  CAS  Google Scholar 

  30. Kumari M, Chaudhary GR, Chaudhary S, Umar A, Akbar S, Baskoutas S (2022) Bio-derived fluorescent carbon dots: synthesis, properties and applications. Molecules 27(16):5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang S, Chen D, Guo G, Li X, Wang C, Li T, Wang G (2022) A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+. Sci Total Environ 825:153913

    Article  CAS  PubMed  Google Scholar 

  32. Sun X, He J, Yang S, Zheng M, Wang Y, Ma S, Zheng H (2017) Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J Photochem Photobiol B 175:219–225

    Article  CAS  PubMed  Google Scholar 

  33. Tian R, Guo Y, Luo F, Yang T, Zhou Z, Wang Z, Xie Y (2023) Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J Photochem Photobiol A: Chem 438:114531

    Article  CAS  Google Scholar 

  34. Zheng X, Qin K, He L, Ding Y, Luo Q, Zhang C, Cui X, Tan Y, Li L, Wei Y (2021) Novel fluorescent nitrogen-doped carbon dots derived from Panax notoginseng for bioimaging and high selectivity detection of Cr6+. Analyst 146(3):911–919

    Article  CAS  PubMed  Google Scholar 

  35. Jiang X, Liu X, Wu M, Ma Y, Xu X, Chen L, Niu N (2022) Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots. Microchem J 181:107742

    Article  CAS  Google Scholar 

  36. Luo J, Zhang M, Cheng J, Wu S, Xiong W, Kong H, Zhao Y, Qu H (2018) Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata. RSC Adv 8(66):37707–37714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang M, Zhao Y, Cheng J, Liu X, Wang Y, Yan X, Zhang Y, Lu F, Wang Q, Qu H (2018) Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artif Cells Nanomed Biotechnol 46(8):1562–1571

    CAS  PubMed  Google Scholar 

  38. Wang H, Zhang M, Ma Y, Wang B, Shao M, Huang H, Liu Y, Kang Z (2020) Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves. J Mater Chem B 8(13):2666–2672

    Article  CAS  PubMed  Google Scholar 

  39. Leong CR, Tong WY, Tan W-N, Tumin ND, Yusof FAM, Yacob LS, bin Rosli MIH, Md Abu T (2020) Synthesis of curcumin quantum dots and their antimicrobial activity on necrotizing fasciitis causing bacteria. Mater Today: Proc 31:31–35

    CAS  Google Scholar 

  40. Qu X, Gao C, Fu L, Chu Y, Wang JH, Qiu H, Chen J (2023) Positively charged carbon dots with antibacterial and antioxidant dual activities for promoting infected wound healing. ACS Appl Mater Interfaces 15(15):18608–18619

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Zhang Y, Kong H, Cheng J, Zhang M, Sun Z, Wang S, Liu J, Qu H, Zhao Y (2020) Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artif Cells Nanomed Biotechnol 48(1):68–76

    Article  PubMed  Google Scholar 

  42. Wei X, Li L, Liu J, Yu L, Li H, Cheng F, Yi X, He J, Li B (2019) Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl Mater Interfaces 11(10):9832–9840

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Li W, Yang X, Kang Y, Zhang H, Liu Y, Lei B (2020) Salvia miltiorrhiza-derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants. ACS Appl Nano Mater 4(1):113–120

    Article  Google Scholar 

  44. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5(45):8904–8924

    Article  CAS  PubMed  Google Scholar 

  45. Naik GG, Shah J, Balasubramaniam AK, Sahu AN (2021) Applications of natural product-derived carbon dots in cancer biology. Nanomedicine 16(7):587–608

    Article  CAS  PubMed  Google Scholar 

  46. Humaera NA, Fahri AN, Armynah B, Tahir D (2021) Natural source of carbon dots from part of a plant and its applications: a review. Luminescence 36(6):1354–1364

    Article  CAS  PubMed  Google Scholar 

  47. Wu X, Liang W, Cai C (2021) Photoluminescence mechanisms of carbon quantum dots. Prog Chem 33:1059

    CAS  Google Scholar 

  48. Wang B, Song H, Qu X, Chang J, Yang B, Lu S (2021) Carbon dots as a new class of nanomedicines: opportunities and challenges. Coord Chem Rev 442:214010

    Article  CAS  Google Scholar 

  49. Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B (2019) Biomass-derived carbon dots and their applications. Energy Environ Mater 2(3):172–192

    Article  CAS  Google Scholar 

  50. Tuerhong M, Xu Y, Yin X-B (2017) Review on carbon dots and their applications. Chin J Anal Chem 45(1):139–150

    Article  Google Scholar 

  51. Sagbas S, Sahiner N (2019) Carbon dots: preparation, properties, and application. In: Nanocarbon and its composites, pp 651–676

  52. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939

    Article  CAS  Google Scholar 

  53. Meng W, Wang B, Ai L, Song H, Lu S (2021) Engineering white light-emitting diodes with high color rendering index from biomass carbonized polymer dots. J Colloid Interface Sci 598:274–282

    Article  CAS  PubMed  Google Scholar 

  54. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    Article  CAS  PubMed  Google Scholar 

  55. Chandra S, Bano D, Pradhan P, Singh VK, Yadav PK, Sinha D, Hasan SH (2020) Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 412(15):3753–3763

    Article  CAS  PubMed  Google Scholar 

  56. Yang X, Liu M, Yin Y, Tang F, Xu H, Liao X (2018) Green, hydrothermal synthesis of fluorescent carbon nanodots from gardenia, enabling the detection of metronidazole in pharmaceuticals and rabbit plasma. Sensors (Basel) 18(4):964

    Article  PubMed  Google Scholar 

  57. Asha Jhonsi M, Kathiravan A (2017) Photoinduced interaction of arylamine dye with carbon quantum dots ensued from Centella asiatica. J Lumin 192:321–327

    Article  CAS  Google Scholar 

  58. Suvarnaphaet P, Tiwary CS, Wetcharungsri J, Porntheeraphat S, Hoonsawat R, Ajayan PM, Tang IM, Asanithi P (2016) Blue photoluminescent carbon nanodots from limeade. Mater Sci Eng C Mater Biol Appl 69:914–921

    Article  CAS  PubMed  Google Scholar 

  59. Dager A, Uchida T, Maekawa T, Tachibana M (2019) Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep 9(1):14004

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Wang T, Wang W, Zhou Z, Yan Y (2019) A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J Ind Eng Chem 72:100–106

    Article  CAS  Google Scholar 

  61. Zhang W, Chen J, Gu J, Bartoli M, Domena JB, Zhou Y, Ferreira BCLB, Cilingir EK, McGee CM, Sampson R, Arduino C, Tagliaferro A, Leblanc RM (2023) Nano-carrier for gene delivery and bioimaging based on pentaethylenehexamine modified carbon dots. J Colloid Interface Sci 639:180–192

    Article  CAS  PubMed  Google Scholar 

  62. Thokchom B, Bhavi SM, Abbigeri MB, Shettar AK, Yarajarla RB (2023) Green synthesis, characterization and biomedical applications of Centella asiatica-derived carbon dots. Carbon Lett 33(4):1057–1071

    Article  Google Scholar 

  63. Li W, Wang S, Li Y, Ma C, Huang Z, Wang C, Li J, Chen Z, Liu S (2017) One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydr Polym 175:7–17

    Article  CAS  PubMed  Google Scholar 

  64. Tejwan N, Saha SK, Das J (2020) Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci 275:102046

    Article  CAS  PubMed  Google Scholar 

  65. Rong M, Wang D, Li Y, Zhang Y, Huang H, Liu R, Deng X (2021) Green-emitting carbon dots as fluorescent probe for nitrite detection. J Anal Test 5(1):51–59

    Article  Google Scholar 

  66. Li CL, Ou CM, Huang CC, Wu WC, Chen YP, Lin TE, Ho LC, Wang CW, Shih CC, Zhou HC, Lee YC, Tzeng WF, Chiou TJ, Chu ST, Cang J, Chang HT (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B 2(28):4564–4571

    Article  CAS  PubMed  Google Scholar 

  67. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl 52(14):3953–3957

    Article  CAS  PubMed  Google Scholar 

  68. Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S (2017) Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29(3):1604436

    Article  Google Scholar 

  69. Shen Y, Wu H, Wu W, Zhou L, Dai Z, Dong S (2020) A facile hydrothermal method to synthesize fluorescent carbon dots for detecting iron. Mater Express 10(7):1135–1140

    Article  CAS  Google Scholar 

  70. Zhao X, Liao S, Wang L, Liu Q, Chen X (2019) Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta 201:1–8

    Article  CAS  PubMed  Google Scholar 

  71. Atchudan R, Edison TNJI, Aseer KR, Perumal S, Lee YR (2018) Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink. Colloids Surf B 169:321–328

    Article  CAS  Google Scholar 

  72. Wang S, Wu S-H, Fang W-L, Guo X-F, Wang H (2019) Synthesis of non-doped and non-modified carbon dots with high quantum yield and crystallinity by one-pot hydrothermal method using a single carbon source and used for ClO detection. Dyes Pigm 164:7–13

    Article  CAS  Google Scholar 

  73. Kang C, Huang Y, Yang H, Yan XF, Chen ZP (2020) A review of carbon dots produced from biomass wastes. Nanomaterials (Basel) 10(11):2316

    Article  CAS  PubMed  Google Scholar 

  74. Xue M, Zou M, Zhao J, Zhan Z, Zhao S (2015) Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. J Mater Chem B 3(33):6783–6789

    Article  CAS  PubMed  Google Scholar 

  75. Zhu L, Yin Y, Wang C-F, Chen S (2013) Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J Mater Chem C 1(32):4925–4932

    Article  CAS  Google Scholar 

  76. Praneerad J, Neungnoraj K, In I, Paoprasert P (2019) Environmentally friendly supercapacitor based on carbon dots from durian peel as an electrode. Key Eng Mater 803:115–119

    Article  Google Scholar 

  77. Aji MP, Susanto, Wiguna PA, Sulhadi (2017) Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. J Theor Appl Phys 11(2):119–126

    Article  Google Scholar 

  78. Jing HH, Bardakci F, Akgol S, Kusat K, Adnan M, Alam MJ, Gupta R, Sahreen S, Chen Y, Gopinath SCB, Sasidharan S (2023) Green carbon dots: synthesis, characterization, properties and biomedical applications. J Funct Biomater 14(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang C, Yang M, Shi H, Yao Z, Liu E, Hu X, Guo P, Xue W, Fan J (2022) Carbon quantum dots prepared by pyrolysis: investigation of the luminescence mechanism and application as fluorescent probes. Dyes Pigm 204:110431

    Article  CAS  Google Scholar 

  80. Chen Y, Lian H, Wei Y, He X, Chen Y, Wang B, Zeng Q, Lin J (2018) Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 10(14):6734–6743

    Article  CAS  PubMed  Google Scholar 

  81. Ethordevic L, Arcudi F, Prato M (2019) Preparation, functionalization and characterization of engineered carbon nanodots. Nat Protoc 14(10):2931–2953

    Article  Google Scholar 

  82. Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J (2016) Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 85:68–75

    Article  CAS  PubMed  Google Scholar 

  83. Qiu Y, Gao D, Yin H, Zhang K, Zeng J, Wang L, Xia L, Zhou K, Xia Z, Fu Q (2020) Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr(VI). Sens Actuators B: Chem 324:128722

    Article  CAS  Google Scholar 

  84. Shi Y, Liu J, Zhang Y, Bao J, Cheng J, Yi C (2021) Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe3+ detection and bioimaging. Chin Chem Lett 32(10):3189–3194

    Article  CAS  Google Scholar 

  85. Choi Y, Jo S, Chae A, Kim YK, Park JE, Lim D, Park SY, In I (2017) Simple microwave-assisted synthesis of amphiphilic carbon quantum dots from A(3)/B(2) polyamidation monomer set. ACS Appl Mater Interfaces 9(33):27883–27893

    Article  CAS  PubMed  Google Scholar 

  86. Shen Z, Zhang C, Yu X, Li J, Wang Z, Zhang Z, Liu B (2018) Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J Mater Chem C 6(36):9636–9641

    Article  CAS  Google Scholar 

  87. Wareing TC, Gentile P, Phan AN (2021) Biomass-based carbon dots: current development and future perspectives. ACS Nano 15(10):15471–15501

    Article  CAS  PubMed  Google Scholar 

  88. Architha N, Ragupathi M, Shobana C, Selvankumar T, Kumar P, Lee YS, Kalai Selvan R (2021) Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican Mint extract for Fe(3+) detection and bio-imaging applications. Environ Res 199:111263

    Article  CAS  PubMed  Google Scholar 

  89. Isnaeni, Rahmawati I, Intan R, Zakaria M (2018) Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique. J Phys: Conf Ser 985:012004

    Google Scholar 

  90. Tejwan N, Sharma A, Thakur S, Das J (2021) Green synthesis of a novel carbon dots from red Korean ginseng and its application for Fe2+ sensing and preparation of nanocatalyst. Inorg Chem Commun 134:108985

    Article  CAS  Google Scholar 

  91. de Medeiros TV, Manioudakis J, Noun F, Macairan J-R, Victoria F, Naccache R (2019) Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C 7(24):7175–7195

    Article  Google Scholar 

  92. Singh RK, Kumar R, Singh DP, Savu R, Moshkalev SA (2019) Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater Today Chem 12:282–314

    Article  CAS  Google Scholar 

  93. Sun Y, Zhang M, Bhandari B, Yang C (2020) Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Rev Int 38(7):1513–1532

    Article  Google Scholar 

  94. Li H, Huang J, Song Y, Zhang M, Wang H, Lu F, Huang H, Liu Y, Dai X, Gu Z, Yang Z, Zhou R, Kang Z (2018) Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater Interfaces 10(32):26936–26946

    Article  CAS  PubMed  Google Scholar 

  95. Lin R, Cheng S, Tan M (2022) Green synthesis of fluorescent carbon dots with antibacterial activity and their application in Atlantic mackerel (Scomber scombrus) storage. Food Funct 13(4):2098–2108

    Article  CAS  PubMed  Google Scholar 

  96. Lu F, Zhang Y, Cheng J, Zhang M, Luo J, Qu H, Zhao Y, Wang Q (2019) Maltase and sucrase inhibitory activities and hypoglycemic effects of carbon dots derived from charred Fructus crataegi. Mater Res Express 6(12):125005

    Article  CAS  Google Scholar 

  97. Sun Z, Lu F, Cheng J, Zhang M, Zhu Y, Zhang Y, Kong H, Qu H, Zhao Y (2018) Hypoglycemic bioactivity of novel eco-friendly carbon dots derived from traditional Chinese medicine. J Biomed Nanotechnol 14(12):2146–2155

    Article  CAS  PubMed  Google Scholar 

  98. Liu X, Wang Y et al (2018) Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine (Lond) 13(4):391–405

    Article  CAS  PubMed  Google Scholar 

  99. Yan X, Zhao Y, Luo J, Xiong W, Liu X, Cheng J, Wang Y, Zhang M, Qu H (2017) Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. J Nanobiotechnol 15(1):60

    Article  Google Scholar 

  100. Cheng J, Zhang M, Sun Z et al (2019) Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived carbon dots. Nanomedicine 14:431

    Article  CAS  PubMed  Google Scholar 

  101. Yao H, Li J, Song Y, Zhao H, Wei Z, Li X, Jin Y, Yang B, Jiang J (2018) Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. Int J Nanomed 13:6249–6264

    Article  CAS  Google Scholar 

  102. Wang S, Zhang Y, Kong H et al (2019) Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine: Lond 14(22):2925–2939

    Article  CAS  PubMed  Google Scholar 

  103. Wang X, Zhang Y, Zhang M, Kong H, Wang S, Cheng J, Qu H, Zhao Y (2019) Novel carbon dots derived from Puerariae lobatae Radix and their anti-gout effects. Molecules 24(22):4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li J, Fu W, Zhang X, Zhang Q, Ma D, Wang Y, Qian W, Zhu D (2023) Green preparation of ginger-derived carbon dots accelerates wound healing. Carbon 208:208–215

    Article  CAS  Google Scholar 

  105. Jia J, Lin B, Gao Y, Jiao Y, Li L, Dong C, Shuang S (2019) Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe(3+) sensing and cellular imaging. Spectrochim Acta A Mol Biomol Spectrosc 211:363–372

    Article  CAS  PubMed  Google Scholar 

  106. Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W, Fang L, Xiao S, Liang J (2020) Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 16(13):e1906206

    Article  PubMed  Google Scholar 

  107. Ting D, Dong N, Fang L, Lu J, Bi J, Xiao S, Han H (2018) Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater 1(10):5451–5459

    Article  Google Scholar 

  108. Thota SP, Thota SM, Srimadh Bhagavatham S, Sai Manoj K, Sai Muthukumar VS, Venketesh S, Vadlani PV, Belliraj SK (2017) Facile one-pot hydrothermal synthesis of stable and biocompatible fluorescent carbon dots from lemon grass herb. IET Nanobiotechnol 12(2):127–132

    Article  PubMed Central  Google Scholar 

  109. Shahid S, Mohiyuddin S, Packirisamy G (2020) Synthesis of multi-color fluorescent carbon dots from mint leaves: a robust bioimaging agent with potential antioxidant activity. J Nanosci Nanotechnol 20(10):6305–6316

    Article  CAS  PubMed  Google Scholar 

  110. Mazrad ZAI, Kang EB, In I, Park SY (2018) Preparation of carbon dot-based ratiometric fluorescent probes for cellular imaging from Curcuma longa. Luminescence 33(1):40–46

    Article  CAS  PubMed  Google Scholar 

  111. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140(12):4260–4269

    Article  CAS  PubMed  Google Scholar 

  112. Alam A-M, Park B-Y, Ghouri ZK, Park M, Kim H-Y (2015) Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem 17(7):3791–3797

    Article  CAS  Google Scholar 

  113. Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P (2018) Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Colloids Surf B Biointerfaces 167:126–133

    Article  CAS  PubMed  Google Scholar 

  114. Durrani S, Zhang J, Yang Z, Pang AP, Zeng J, Sayed SM, Khan A, Zhang Y, Wu FG, Lin F (2022) Plant-derived Ca, N, S-doped carbon dots for fast universal cell imaging and intracellular Congo red detection. Anal Chim Acta 1202:339672

    Article  CAS  PubMed  Google Scholar 

  115. Shi X, Meng H, Sun Y, Qu L, Lin Y, Li Z, Du D (2019) Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small 15(48):e1901507

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Innovation Leader and Key Talent Team Project of Shanxi Province (202204051002034), the Key Research and Development Plan of Shanxi Province (202102130501002), and the Scientific Research Project for Returned Overseas Professionals of Shanxi Province (2022-120).

Author information

Authors and Affiliations

Authors

Contributions

SG designed the structure and content, assembled the literature, and wrote this review. RZ, YL, QZ, XL, XW, and BL provided suggestions and revised this review.

Corresponding authors

Correspondence to Xiuping Wu or Bing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethical standards

The authors declare that for this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhang, R., Liu, Y. et al. Synthesis, applications in therapeutics, and bioimaging of traditional Chinese medicine-derived carbon dots. Carbon Lett. 34, 545–564 (2024). https://doi.org/10.1007/s42823-023-00615-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00615-y

Keywords

Navigation