Skip to main content
Log in

Green synthesis, characterization and biomedical applications of Centella asiatica-derived carbon dots

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Medicinal plant-derived carbon dots are eco-friendly and possess therapeutic properties. Among the medicinal plants studied throughout the world, Centella asiatica (L.) Urb. is known for its medicinal values, especially its neuroceutical and cogniceutical properties. This work discusses the green synthesis of carbon dots (CDs) using C. asiatica leaves as the carbon source via fast and cost-effective microwave-assisted method, and its physico-chemical characterization via UV–visible, fluorescence and FTIR spectrometry, XRD, SEM, AFM, TEM, SAED, EDX and zeta potential analyses. The study revealed quasi-spherical CDs having size ~ 3–6 nm, polycrystalline nature, and presence of various functional groups like –COOH, –H, =CH2 and C–O–C with UV absorption peaks at 213 and 322 nm. Interestingly, the C. asiatica-derived CDs exhibited blue fluorescence under UV with maximum emission wavelength of 460 nm when excited at 400 nm. Further, these CDs were evaluated for their biological applications, which uncovered their potential in therapeutics such as antimicrobial properties against both Gram-positive and Gram-negative bacteria at a dose of 10 μg, strong antioxidant activity with IC50 values of 165.28 and 128.48 μg mL−1 in DPPH and H2O2 assays, respectively, and profound anti-inflammatory activity with IC50 value of 106.20 μg mL−1 in protein denaturation assay. The CDs were also assessed for cytotoxicity using whole blood cells and were found to be safe for in vitro administration. Thus, the C. asiatica-derived CDs can be exploited for their potent biomedicinal properties.

Graphical abstract

Fluorescent carbon dots (CDs) were prepared by microwave-assisted pyrolysis of Centella asiatica leaf extract and purification. The as synthesized CDs were subjected to various physico-chemical characterization and biomedical assays to understand its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  2. Mosleh-Shirazi S, Kasaee SR, Dehghani F, Kamyab H, Kirpichnikova I, Chelliapan S, Firuzyar T, Akhtari M, Amani AM (2023) Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceram Int 49:11293–11301. https://doi.org/10.1016/j.ceramint.2022.11.329

    Article  CAS  Google Scholar 

  3. Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, Zareshahrabadi Z, Vaez A, Amani AM, Kamyab H, Chelliapan S (2022) A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-24176-1

    Article  Google Scholar 

  4. Sunny NE, Mathew SS, Chandel N, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y, Rajamohan N, Kumar SV (2022) Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications—a review. Chemosphere 300:134612. https://doi.org/10.1016/j.chemosphere.2022.134612

    Article  CAS  Google Scholar 

  5. Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, ALJohani AA, (2022) A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. Chemosphere 308:136471. https://doi.org/10.1016/j.chemosphere.2022.136471

    Article  CAS  Google Scholar 

  6. Gallareta-Olivares G, Rivas-Sanchez A, Cruz-Cruz A, Hussain SM, González-González RB, Cárdenas-Alcaide MF, Iqbal HMN, Parra-Saldívar R (2023) Metal-doped carbon dots as robust nanomaterials for the monitoring and degradation of water pollutants. Chemosphere 312:137190. https://doi.org/10.1016/j.chemosphere.2022.137190

    Article  CAS  Google Scholar 

  7. Sarojini G, Kannan P, Rajamohan N, Rajasimman M (2023) Bio-fabrication of porous magnetic Chitosan/Fe3O4 nanocomposite using Azolla pinnata for removal of chromium—parametric effects, surface characterization and kinetics. Environ Res 218:114822. https://doi.org/10.1016/j.envres.2022.114822

    Article  CAS  Google Scholar 

  8. Solangi NH, Mazari SA, Mubarak NM, Karri RR, Rajamohan N, Vo D-VN (2023) Recent trends in MXene-based material for biomedical applications. Environ Res 222:115337. https://doi.org/10.1016/j.envres.2023.115337

    Article  CAS  Google Scholar 

  9. Verma S, Rawat R, Hada V, Shrivastava RK, Pal K, Sagiri SS, Mili M, Hashmi SAR, Srivastava AK (2023) Carbon nanotubes based composites for biomedical applications advances in biomedical polymers and composites. Elsevier, Amsterdam, pp 657–674

    Book  Google Scholar 

  10. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  Google Scholar 

  11. Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S (2022) Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review. Small Sci 2:2200012. https://doi.org/10.1002/smsc.202200012

    Article  CAS  Google Scholar 

  12. Ehtesabi H, Hallaji Z, Najafi Nobar S, Bagheri Z (2020) Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications. Microchim Acta 187:150. https://doi.org/10.1007/s00604-019-4091-4

    Article  CAS  Google Scholar 

  13. Jhonsi MA, Kathiravan A (2017) Photoinduced interaction of arylamine dye with carbon quantum dots ensued from Centella asiatica. J Lumin 192:321–327. https://doi.org/10.1016/j.jlumin.2017.06.056

    Article  CAS  Google Scholar 

  14. Velmurugan P, Kumar RV, Sivakumar S, Ravi AV (2022) Fabrication of blue fluorescent carbon quantum dots using green carbon precursor Psidium guajava leaf extract and its application in water treatment. Carbon Lett 32:119–129. https://doi.org/10.1007/s42823-021-00259-w

    Article  Google Scholar 

  15. Deng W, Zang C, Li Q, Sun B, Mei X, Bai L, Shang X, Deng Y, Xiao Y, Ghiladi RA, Lorimer GH, Zhang X, Wang J (2023) Hydrothermally derived green carbon dots from broccoli water extracts: decreased toxicity, enhanced free-radical scavenging, and anti-inflammatory performance. ACS Biomater Sci Eng Acsbiomaterials. https://doi.org/10.1021/acsbiomaterials.2c01537

    Article  Google Scholar 

  16. Wang X, Qu K, Xu B, Ren J, Qu X (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21:2445. https://doi.org/10.1039/c0jm02963g

    Article  CAS  Google Scholar 

  17. Afonso AG Jr, Aquino FT, Dalmônico GML, Nascimento MV, Wrasse E, de Aguiar KMFR (2022) Green synthesis of carbon nanodots from agro-industrial residues. Carbon Lett 32:131–141. https://doi.org/10.1007/s42823-021-00260-3

    Article  Google Scholar 

  18. Simsek S, Ozge Alas M, Ozbek B, Genc R (2019) Evaluation of the physical properties of fluorescent carbon nanodots synthesized using Nerium oleander extracts by microwave-assisted synthesis methods. J Mater Res Technol 8:2721–2731. https://doi.org/10.1016/j.jmrt.2019.04.008

    Article  CAS  Google Scholar 

  19. Ma Z, Ming H, Huang H, Liu Y, Kang Z (2012) One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 36:861. https://doi.org/10.1039/c2nj20942j

    Article  CAS  Google Scholar 

  20. Xu J, Cui K, Gong T, Zhang J, Zhai Z, Hou L, Zaman FUZ, Yuan C (2022) Ultrasonic-assisted synthesis of N-doped, multicolor carbon dots toward fluorescent inks, fluorescence sensors, and logic gate operations. Nanomaterials 12:312. https://doi.org/10.3390/nano12030312

    Article  CAS  Google Scholar 

  21. Chahal S, Macairan J-R, Yousefi N, Tufenkji N, Naccache R (2021) Green synthesis of carbon dots and their applications. RSC Adv 11:25354–25363. https://doi.org/10.1039/D1RA04718C

    Article  CAS  Google Scholar 

  22. Bajpai SK, D’Souza A, Suhail B (2019) Carbon dots from guar gum: synthesis, characterization and preliminary in vivo application in plant cells. Mater Sci Eng B 241:92–99. https://doi.org/10.1016/j.mseb.2019.02.014

    Article  CAS  Google Scholar 

  23. Ghosal K, Ghosh A (2019) Carbon dots: the next generation platform for biomedical applications. Mater Sci Eng C 96:887–903. https://doi.org/10.1016/j.msec.2018.11.060

    Article  CAS  Google Scholar 

  24. Luo W-K, Zhang L-L, Yang Z-Y, Guo X-H, Wu Y, Zhang W, Luo J-K, Tang T, Wang Y (2021) Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnol 19:320. https://doi.org/10.1186/s12951-021-01072-3

    Article  CAS  Google Scholar 

  25. Jhonsi MA, Ananth DA, Nambirajan G, Sivasudha T, Yamini R, Bera S, Kathiravan A (2018) Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 196:295–302. https://doi.org/10.1016/j.saa.2018.02.030

    Article  CAS  Google Scholar 

  26. Roy S, Ezati P, Rhim J-W, Molaei R (2022) Preparation of turmeric-derived sulfur-functionalized carbon dots: antibacterial and antioxidant activity. J Mater Sci 57:2941–2952. https://doi.org/10.1007/s10853-021-06804-2

    Article  CAS  Google Scholar 

  27. Dong C, Ma X, Huang Y, Zhang Y, Gao X (2022) Carbon dots nanozyme for anti-inflammatory therapy via scavenging intracellular reactive oxygen species. Front Bioeng Biotechnol 10:943399. https://doi.org/10.3389/fbioe.2022.943399

    Article  Google Scholar 

  28. Rodríguez-Varillas S, Fontanil T, Obaya ÁJ, Fernández-González A, Murru C, Badía-Laíño R (2022) Biocompatibility and antioxidant capabilities of carbon dots obtained from tomato (Solanum lycopersicum). Appl Sci 12:773. https://doi.org/10.3390/app12020773

    Article  CAS  Google Scholar 

  29. Van Tran V, Moon J, Lee Y-C (2022) Facile approach to preparation of novel black vitamin C using microwave treatment: characteristics, antioxidant activity, and anti-pollution properties. Carbon Lett. https://doi.org/10.1007/s42823-022-00431-w

    Article  Google Scholar 

  30. Architha N, Ragupathi M, Shobana C, Selvankumar T, Kumar P, Lee YS, Kalai Selvan R (2021) Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican mint extract for Fe3+ detection and bio-imaging applications. Environ Res 199:111263. https://doi.org/10.1016/j.envres.2021.111263

    Article  CAS  Google Scholar 

  31. Centeno L, Romero-García J, Alvarado-Canché C, Gallardo-Vega C, Télles-Padilla G, Díaz Barriga-Castro E, Cabrera-Álvarez EN, Ledezma-Pérez A, de León A (2021) Green synthesis of graphene quantum dots from Opuntia sp extract and their application in phytic acid detection. Sens Bio-Sens Res 32:100412. https://doi.org/10.1016/j.sbsr.2021.100412

    Article  Google Scholar 

  32. Liu R, Zhang Y, Piao Y, Meng L-Y (2021) Development of nitrogen-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of the heavy-ion Fe3+. Carbon Lett 31:821–829. https://doi.org/10.1007/s42823-020-00222-1

    Article  Google Scholar 

  33. Vibhute A, Patil T, Malavekar D, Patil S, Lee S, Tiwari AP (2023) Green synthesis of fluorescent carbon dots from Annona Squamosa leaves optical and structural properties with bactericidal anti-inflammatory, anti-angiogenesis applications. J Fluoresc. https://doi.org/10.1007/s10895-023-03159-6

    Article  Google Scholar 

  34. Mathew S, Thara CR, John N, Mathew B (2023) Carbon dots from green sources as efficient sensor and as anticancer agent. J Photochem Photobiol Chem 434:114237. https://doi.org/10.1016/j.jphotochem.2022.114237

    Article  CAS  Google Scholar 

  35. Sharma N, Sharma I, Bera MK (2022) Microwave-assisted green synthesis of carbon quantum dots derived from Calotropis Gigantea as a fluorescent probe for Bioimaging. J Fluoresc 32:1039–1049. https://doi.org/10.1007/s10895-022-02923-4

    Article  CAS  Google Scholar 

  36. Gunathilake K, Ranaweera K, Rupasinghe H (2018) In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 6:107. https://doi.org/10.3390/biomedicines6040107

    Article  CAS  Google Scholar 

  37. Gregory J, Vengalasetti YV, Bredesen DE, Rao RV (2021) Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules 11:543. https://doi.org/10.3390/biom11040543

    Article  CAS  Google Scholar 

  38. Gohil K, Patel J, Gajjar A (2010) Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci 72:546. https://doi.org/10.4103/0250-474X.78519

    Article  Google Scholar 

  39. Chen C-L, Tsai W-H, Chen C-J, Pan T-M (2016) Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J Tradit Complement Med 6:362–369. https://doi.org/10.1016/j.jtcme.2015.07.002

    Article  Google Scholar 

  40. Siddique YH, Naz F, Jyoti S, Fatima A, Khanam S, Rahul AF, Mujtaba SF, Faisal M (2014) Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic drosophila model of Parkinson’s disease. Park Dis 2014:1–11. https://doi.org/10.1155/2014/262058

    Article  Google Scholar 

  41. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  42. Vardanyan RS, Hruby VJ (2006) Antimycobacterial Drugs Synthesis of Essential Drugs. Elsevier, Amsterdam, pp 525–534

    Book  Google Scholar 

  43. Ali BM, Boothapandi M, Sultan Nasar A (2020) Nitric oxide, DPPH and hydrogen peroxide radical scavenging activity of TEMPO terminated polyurethane dendrimers: data supporting antioxidant activity of radical dendrimers. Data Brief 28:104972. https://doi.org/10.1016/j.dib.2019.104972

    Article  Google Scholar 

  44. Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N (2018) In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu 39:239–242. https://doi.org/10.4103/ayu.AYU_27_18

    Article  Google Scholar 

  45. Singh RK, Kumar R, Singh DP, Savu R, Moshkalev SA (2019) Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater Today Chem 12:282–314. https://doi.org/10.1016/j.mtchem.2019.03.001

    Article  CAS  Google Scholar 

  46. Liao X, Chen C, Yang J, Zhou R, Si L, Huang Q, Huang Z, Lv C (2021) Nitrogen-doped carbon dots for dual-wavelength excitation fluorimetric assay for ratiometric determination of phosalone. Microchim Acta 188:247. https://doi.org/10.1007/s00604-021-04900-3

    Article  CAS  Google Scholar 

  47. Hu X, Li Y, Xu Y, Gan Z, Zou X, Shi J, Huang X, Li Z, Li Y (2021) Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem 339:127775. https://doi.org/10.1016/j.foodchem.2020.127775

    Article  CAS  Google Scholar 

  48. Naik GG, Alam MdB, Pandey V, Mohapatra D, Dubey PK, Parmar AS, Sahu AN (2020) Multi-functional carbon dots from an Ayurvedic medicinal plant for cancer cell bioimaging applications. J Fluoresc 30:407–418. https://doi.org/10.1007/s10895-020-02515-0

    Article  CAS  Google Scholar 

  49. Malavika JP, Shobana C, Ragupathi M, Kumar P, Lee YS, Govarthanan M, Selvan RK (2021) A sustainable green synthesis of functionalized biocompatible carbon quantum dots from aloe Barbadensis miller and its multifunctional applications. Environ Res 200:111414. https://doi.org/10.1016/j.envres.2021.111414

    Article  CAS  Google Scholar 

  50. Sailaja Prasannakumaran Nair S, Kottam N, S G PK, (2020) Green synthesized luminescent carbon nanodots for the sensing application of Fe3+ ions. J Fluoresc 30:357–363. https://doi.org/10.1007/s10895-020-02505-2

    Article  CAS  Google Scholar 

  51. Ramírez-García G, Trapiella-Alfonso L, d’Orlyé F, Varenne A (2018) Electrophoretic Methods for Characterizing Nanoparticles and Evaluating Their Bio-interactions for Their Further Use as Diagnostic, Imaging, or Therapeutic Tools Capillary Electromigration Separation Methods. Elsevier, Amsterdam, pp 397–421

    Google Scholar 

  52. Dong X, Liang W, Meziani MJ, Sun Y-P, Yang L (2020) Carbon dots as potent antimicrobial agents. Theranostics 10:671–686. https://doi.org/10.7150/thno.39863

    Article  CAS  Google Scholar 

  53. Ploski JE, Aplan PD (2001) Characterization of DNA fragmentation events caused by genotoxic and non-genotoxic agents. Mutat Res Mol Mech Mutagen 473:169–180. https://doi.org/10.1016/S0027-5107(00)00147-0

    Article  CAS  Google Scholar 

  54. Yadav S, MohdA S, Pal M, Khan R, Srivastava AK (2022) Cytotoxicity and DNA fragmentation-mediated apoptosis response of hexagonal ZnO nanorods against human prostate cancer cells. Appl Surf Sci Adv 9:100237. https://doi.org/10.1016/j.apsadv.2022.100237

    Article  Google Scholar 

  55. Sui X, Luo C, Wang C, Zhang F, Zhang J, Guo S (2016) Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine Nanotechnol Biol Med 12:1997–2006. https://doi.org/10.1016/j.nano.2016.03.010

    Article  CAS  Google Scholar 

  56. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118. https://doi.org/10.4103/0973-7847.70902

    Article  CAS  Google Scholar 

  57. Aykul S, Martinez-Hackert E (2016) Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem 508:97–103. https://doi.org/10.1016/j.ab.2016.06.025

    Article  CAS  Google Scholar 

  58. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53. https://doi.org/10.1016/j.arabjc.2009.12.008

    Article  CAS  Google Scholar 

  59. Das P, Ganguly S, Margel S, Gedanken A (2021) Immobilization of heteroatom-doped carbon dots onto nonpolar plastics for antifogging, antioxidant, and food monitoring applications. Langmuir 37:3508–3520. https://doi.org/10.1021/acs.langmuir.1c00471

    Article  CAS  Google Scholar 

  60. Jin Y, Zhang Q, Qin X, Liu Z, Li Z, Zhong X, Xia L, He J, Fang B (2022) Carbon dots derived from folic acid attenuates osteoarthritis by protecting chondrocytes through NF-κB/MAPK pathway and reprogramming macrophages. J Nanobiotechnology 20:469. https://doi.org/10.1186/s12951-022-01681-6

    Article  CAS  Google Scholar 

  61. Song X, Cao L, Cong S, Song Y, Tan M (2018) Characterization of endogenous nanoparticles from roasted chicken breasts. J Agric Food Chem 66:7522–7530. https://doi.org/10.1021/acs.jafc.8b01988

    Article  CAS  Google Scholar 

  62. Kasouni AI, Chatzimitakos TG, Troganis AN, Stalikas CD (2021) Citric acid-based carbon dots: from revealing new insights into their biological properties to demonstrating their enhanced wound healing potential by in vitro and in vivo experiments. Mater Today Commun 26:102019. https://doi.org/10.1016/j.mtcomm.2021.102019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author, Bothe Thokchom, heartily acknowledges Council of Scientific & Industrial Research (CSIR)—University Grant Commission (UGC), Delhi for providing the financial support under CSIR-UGC Junior Research Fellowship (No. 201920-19J6233029). The authors appreciate Karnataka Institute for DNA Research (KIDNAR), Dharwad for their kind provision of facilities. The authors also honor the Department of Science and Technology (DST); Sophisticated Analytical Instrument Facility (SAIF), Shivaji University, Kolhapur; SAIF, Indian Institute of Technology Bombay, Powai; SAIF-Dharwad and University Scientific Instrumentation Centre (USIC), and DST PURSE Phase-II Program of Karnatak University, Dharwad for their kind assistance in TEM; FEG-SEM and other instrumentation facilities. Furthermore, the authors would also like to thank Dr. Kotresha Katrahalli, Karnatak Science College, Dharwad for identification and authentication of plant material and the Department of Applied Genetics, Karnatak University, Dharwad, India for providing the research facilities.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed mainly by Bothe Thokchom. Santosh M. Bhavi assisted with the characterization of Ca-CDs, Megha B. Abbigeri aided with the cytotoxicity assay and Arun K. Shettar helped in the in-vitro tests for antioxidant and anti-inflammatory activities. The overall work was supervised by Ramesh Babu Yarajarla. The first draft of the manuscript was written by Bothe Thokchom and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramesh Babu Yarajarla.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interests.

Ethical appoval

Blood samples were obtained with informed consent and experiment was carried out at Karnataka Institute for DNA Research (KIDNAR), Dharwad (IEC Ref no. KIDNAR/B[4]/2018-19).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thokchom, B., Bhavi, S.M., Abbigeri, M.B. et al. Green synthesis, characterization and biomedical applications of Centella asiatica-derived carbon dots. Carbon Lett. 33, 1057–1071 (2023). https://doi.org/10.1007/s42823-023-00505-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00505-3

Keywords

Navigation