Skip to main content

Advertisement

Log in

Exploration on reduced graphene oxide/strontium pyro niobate electrode material for electrochemical energy storage applications

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Most recently, graphene-related composite-modified electrode surfaces are been widely employed to improve surface interactions and electron transfer kinetics. Hydrothermally prepared strontium pyro niobate (SPN) and reduced graphene oxide/strontium pyro niobate (RGOSPN) nanostructures reveal excellent morphology. X-ray diffraction analysis of SPN and RGOSPN agree with standard data. Thermogravimetry–differential scanning calorimetry analyses show that RGOSPN has higher thermal stability than SPN. In addition, from the polarization–electric field (PE) loop measurements, the estimated value of remnant polarization (Pr) and coercive electric field (Ec) of SPN are 0.039 µC cm−2 and − 2.90 kV cm−1 and that of RGOSPN nanocomposite are 0.0139 µC cm−2 and − 2.04 kV cm−1. Cyclic voltammetry measurements show that RGOSPN nanocomposite manifests the possibility of electrochemical reversibility beyond long cycles without change in performance. The redox cycle reveal that RGOSPN can be used as part of a composite electrode for hybrid capacitors dynamic conditions. Moreover, the specific capacitance of SPN and RGOSPN was calculated using galvanostatic charge–discharge (GCD) technique. The observed energy density of 9.1 W h kg−1 in RGOSPN is higher when compared with previous reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li R, Wei Z, Gou XL (2015) Nitrogen, phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal 5:4133–4142

    CAS  Google Scholar 

  2. Prokhorov AM, Kuzminov YS (1990) Ferroelectric crystals for laser radiation control, vol 81. Adam Hilger, Bristol

    Google Scholar 

  3. Deshpande SB, Potdar HS, Godbole PD, Date SK (1992) Preparation and ferroelectric properties of SBN:50 ceramics. J Am Soc Ceram 75:2581–2585

    CAS  Google Scholar 

  4. Yang W, Salim J, Li SH, Sun C, Chen L, Goodenough JB, Kim Y (2012) Perovskite Sr0.95Ce0.05CoO3−δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. J Mater Chem 22:18902–18907

    CAS  Google Scholar 

  5. Garcia EM, Tarôco HA, Matencio HT, Domingues RZ, Dos Santos JAF (2012) Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction. Int J Hydrog Energy 37:6400–6406

    CAS  Google Scholar 

  6. Jin C, Cao XC, Lu F, Yang Z, Yang R (2013) Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. J Hydrog Energy 38:10389–10393

    CAS  Google Scholar 

  7. Sunarso J, Torriero AAJ, Zhou W, Howlett PC, Forsyth M (2012) Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study. J Phys Chem C 116:5827–5834

    CAS  Google Scholar 

  8. Mendesa RG, Araújob EB, Eirasc JA (2001) Structural characterization and ferroelectric properties of strontium barium niobate (SrxBa1−xNb2O6) thin films. Mater Res 4:113–116

    Google Scholar 

  9. Nanamatsu S, Kimura M, Doi K, Takahashi M (1971) Ferroelectric properties of Sr2Nb2O7 single crystal. J Phys Soc Jpn 30:300–301

    CAS  Google Scholar 

  10. Takahashi M, Nanamatsu S, Kimura M (1972) The growth of ferroelectric single crystal Sr2Nb2O7 by means of the floating zone technique. J Cryst Growth 13–14:681–685

    Google Scholar 

  11. Nanamatsu S, Kimura M, Kawamura T (1975) Crystallographic and dielectric properties of ferroelectric A2B2O7 (A = Sr, B = Ta, Nb) crystals and their solid solutions. J Phys Soc Jpn 38:817–824

    CAS  Google Scholar 

  12. Shabbir G, Kojima S (2003) Acoustic and thermal properties of strontium pyroniobate single crystals. J Phys D Appl Phys 36:1036–1039

    CAS  Google Scholar 

  13. Ishizawa N, Marumo F, Kawamura T, Kimura M (1975) The crystal structure of Sr2Nb2O7, a compound with perovskite-type slabs. Acta Crystallogr B31:1912–1915

    CAS  Google Scholar 

  14. Daniels P, Tamazyan R, Kuntscher CA, Dressel AM, Lichtenberg F, Van Smaalen S (2002) The incommensurate modulation of the structure of Sr2Nb2O7. Acta Crystallogr B 58:970–976

    Google Scholar 

  15. Sangiovanni DG, Gueorguiev GK, Kakanakova-Georgieva A (2018) Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal organic chemical vapor deposition of AlN on graphene. Phys Chem Chem Phys 20:17751–17761

    CAS  Google Scholar 

  16. Goyenola C, Stafström S, Schmidt S, Hultman L, Gueorguiev GK (2014) Carbon fluoride, CFx: structural diversity as predicted by first principles. J Phys Chem C 118(12):6514–6521

    CAS  Google Scholar 

  17. Zhang H, Du X, Ding S, Wang Q, Chang L, Ma X, Hao X, Pen C (2019) DFT calculations of the synergistic effect of λ-MnO2/Graphene composites for electrochemical adsorption of lithium ions. Phys Chem Chem Phys 21:8133–8140

    CAS  Google Scholar 

  18. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469–477

    CAS  Google Scholar 

  19. Kandalkar S, Dhawale D, Kim C, Lokhande C (2010) Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth Met 160:1299–1302

    CAS  Google Scholar 

  20. Jabbar A, Yasin G, Khan WQ, Anwar MY, Korai RM, Nizam MN, Muhyodin G (2017) Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv 7:31100–31109

    CAS  Google Scholar 

  21. Atuchin VV, Grivel JC, Korotkov AS, Zhang Z (2008) Electronic parameters of Sr2Nb2O7 and chemical bonding. J Solid State Chem 181:1285–1291

    CAS  Google Scholar 

  22. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev J 56:978–982

    CAS  Google Scholar 

  23. Veerappan G, Yoo SY, Zhang K, Ma M, Kang B (2016) High-reversible capacity of perovskite BaSnO3/rGO composite for lithium-ion battery anodes. Electrochem Acta 214:31–37

    CAS  Google Scholar 

  24. Gurunathan SJ, Han JW, Park JH, Kim E, Choi YJ, Kwon DN (2015) Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276

    CAS  Google Scholar 

  25. Cho I-S, Lee S, Noh JH, Kim DW, Jung HS, Kim DW, Hong KS (2010) Facile hydrothermal synthesis of SrNb2O6 nanotubes with rhombic cross sections. Cryst Growth Des 10:2447–2450

    CAS  Google Scholar 

  26. Kumar MIS, Kirupavathy SS, Jerusha E, Sureshkumar S, Vinolia M (2018) Synthesis and characterization of novel reduced graphene oxide supported barium niobate (RGOBN) nanocomposite with enhanced ferroelectric properties and thermal stability. J Mater Sci Mater Electron 29:19228–19237

    CAS  Google Scholar 

  27. Ke QQ, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54

    Google Scholar 

  28. Mathai KC, Vidya S, John A, Solomon S, Thomas JK (2014) Structural, optical, and compactness characteristics of nanocrystalline CaNb2O6 synthesized through an auto igniting combustion method. Adv Condens Matter Phys. https://doi.org/10.1155/2014/735878

    Article  Google Scholar 

  29. Song Z, Liu W, Wei W, Quan C, Sun N, Zhou Q, Liu G, Wen X (2016) Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors. J Alloy Compd 685:355–363

    CAS  Google Scholar 

  30. Alanis J, Rodríguez-Aranda MC, Rodríguez ÁG, Ojeda-Galván HJ, Mendoza ME, Navarro-Contreras HR (2019) Temperature dependence of the Raman dispersion of Sr2Nb2O7: influence of an electric field during the synthesis. J Raman Spectrosc 50:102–114

    CAS  Google Scholar 

  31. Monisha M, Priyadarshani N, Durairaj M, Sabari Girisun TC (2020) 2PA induced optical limiting behaviour of metal (Ni, Cu, Zn) niobate decorated reduced graphene oxide. Opt Mater 101:109775

    CAS  Google Scholar 

  32. Arunkumar P, Ashish AG, Babu B, Sarang S, Suresh A, Sharma CH, Shaijumon MM (2015) Nb2O5/graphene nanocomposites for electrochemical energy storage. RSC Adv 5(74):59997–60004

    CAS  Google Scholar 

  33. Li X, Zhang T, Gu S, Kang SZ, Li G, Mu J (2013) Reduced graphene oxide/potassium niobate composite nanoscrolls with enhanced photocatalytic activity for dye degradation. Sep Purif Technol 108:139–142

    CAS  Google Scholar 

  34. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206

    CAS  Google Scholar 

  35. Kim BK, Sy S, Yu A, Zhang J (2015 ) Electrochemical supercapacitors for energy storage and conversion. Handbook of clean energy systems. Wiley, New York. ISBN:978-1-118-38858-7

  36. Ghosh D, Giri S, Moniruzzaman M, Basu T, Mandala M, Das CK (2014) αMnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Trans 43(28):11067–11076

    CAS  Google Scholar 

  37. Yuan L, Lu XH, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, Hu C, Tong Y, Zhou J, Wang ZL (2012) Flexible solid-state supercapacitors based on carbon, nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    CAS  Google Scholar 

  38. Wang HW, Hu ZA, Chang YQ, Chen YL, Zhang ZY, Yang YY, Wu HY (2011) Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater Chem Phys 130:672–679

    CAS  Google Scholar 

  39. Liu Z, Wang LD, Ma G, Yuan Y, Jia HN, Fei W (2020) Supercapacitor with ultrahigh volumetric capacitance produced by self-assembly of reduced graphene oxide through phosphoric acid treatment. J Mater Chem A 8:18933–18944

    CAS  Google Scholar 

  40. Liu J, Shakir I, Kang DJ (2014) Lithium niobate nanoflakes as electrodes for highly stable electrochemical supercapacitor devices. Mater Lett 119:84–87

    CAS  Google Scholar 

  41. Kim CH, Kim B-H, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50:2472–2481

    CAS  Google Scholar 

  42. Ding R, Qia L, Jiac MJ, Wang H (2013) Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim Acta 107:494–502

    CAS  Google Scholar 

  43. Azhagan MVK, Vaishampayan MV, Shelke MV (2014) Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites. J Mater Chem A 2:2152

    CAS  Google Scholar 

  44. Chen T, Dai L (2014) Flexible supercapacitors based on carbon nanomaterials. J Mater Chem A 2(28):10756

    CAS  Google Scholar 

  45. Zhao Y, Liu J, Wang B, Sha J, Li Y, Zheng D, Amjadipour M, MacLeod J, Motta N (2017) Supercapacitor electrodes with remarkable specific capacitance converted from hybrid graphene oxide/NaCl/urea films. ACS Appl Mater Interfaces 9(27):22588–22596

    CAS  Google Scholar 

  46. Lei Z, Zhang J, Zhao XS (2012) Ultrathin MnO2 nano fibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160

    CAS  Google Scholar 

  47. Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433

    CAS  Google Scholar 

  48. Aadil M, Shaheen W, Warsi MF, Shahid M, Khan MA, Ali Z, Haider S, Shakir I (2016) Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. J Alloy Compd 689:648–654

    CAS  Google Scholar 

  49. Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor R. Sundar, Head, CSRC, Rajalakshmi Engineering College, Chennai for providing the support for lab facility and encouragements. The support received from MSRC, IIT Madras for PE loop measurements is highly appreciable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shahil Kirupavathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.I.S., Kirupavathy, S.S. & Shalini, S. Exploration on reduced graphene oxide/strontium pyro niobate electrode material for electrochemical energy storage applications. Carbon Lett. 31, 619–633 (2021). https://doi.org/10.1007/s42823-020-00203-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00203-4

Keywords

Navigation