Skip to main content

Advertisement

Log in

Hydrothermal Synthesis of Vanadium Pentoxides–Reduced Graphene Oxide Composite Electrodes for Enhanced Electrochemical Energy Storage

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene-based nanomaterials (graphene nanosheets/graphene nanoribbons) decorated with vanadium pentoxide (V2O5) nanobelts (i.e. GVNBs) were synthesized via one-step low-temperature facile hydrothermal/solvothermal method as high-performance electrochemical composite electrodes. VNBs were formed in the presence of graphene oxide (GO), a mild oxidant, which transforms into reduced GO (rGOHT) assisted in enhancing the electronic conductivity with mechanical strength for GVNBs. From surface sensitive electron microscopy and spectroscopy structural characterization techniques and analyses, rGOHT nanosheets/ nanoribbons appear to be inserted into and coated with the layered crystal structure of VNBs, which further confirmed the enhanced electrical conductivity of VNBs. The electrochemical energy storage capacity of GVNBs is investigated using electrochemistry and the specific capacitance Cs are determined from both the cyclic voltammetry (CV) with scan rate and galvanostatic charge/discharge V-t profiles with varying current density. The GVNBs having rGO-rich composite V1G3 (V2O5/GO = 1:3) showed superior performance followed by V2O5-rich V3G1 (V2O5/GO = 3:1) as compared with V1G1 (V2O5/GO = 1:1) composites besides pure component (rGOHT and V2O5) materials. Moreover, V1G3 and V3G1 composites showed excellent cyclic stability and the capacitance retention of > 80% after 200 cycles. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters (charge transfer and solution resistance, double layer and low frequency capacitance). These findings highlight the comparative performance of nanocomposite hybrid electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gupta and S. B. Carrizosa, J. Electron. Materials 44, 4492 (2015).

    Article  CAS  Google Scholar 

  2. S. Gupta, M. vanMeveren and J. Jasinski, Int. J. Electrochem. Sci. 10, 10272 (2015).

    CAS  Google Scholar 

  3. S. Bai, K. Zhang, L. Wang, J. Sun, R. Luo, D. Li and A. Chen, J. Mater. Chem. A 2, 7927 (2014).

    Article  CAS  Google Scholar 

  4. G. Wang L. Zhang and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  5. A. Geim and K. S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  6. R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater. 14, 271 (2015).

    Article  CAS  Google Scholar 

  7. M. Lee, S.K. Balasingham, H.Y. Jeong, W. G. Hong, H.-B.-R. Lee, B. H. Kim and Y. Jun, Sci. Rep. 5, 8151 (2015).

    Article  CAS  Google Scholar 

  8. K. Byrappa, M. Yoshimura, in Handbook of Hydrothermal Technology, Noyes Publications, New Jersey, USA (2001).

    Google Scholar 

  9. R. Roy, J. Sol. Stat. Chem. 111, s11–17 (1994).

    Article  Google Scholar 

  10. G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).

    Article  CAS  Google Scholar 

  11. W. Avansi Jr, C. Ribeiro, E.R. Leite and V.R. Mastelaro, Cryst. Growth Des. 9, 3626 (2009).

    Article  CAS  Google Scholar 

  12. C. Xiong, A.E. Aliev, B. Gnade and K.J. Balkus Jr. ACS Nano 2, 293 (2008).

    Article  CAS  Google Scholar 

  13. E. H. Lee, M. B. Lewis, P. J. Blau, and L. K. Mansur, J. Mater. Res. 6, 610 (1991).

    Article  CAS  Google Scholar 

  14. B.H. Kim, W. G. Hong, H. R. Moon, S. M. Lee, J. M. Kim, S. Kang, Y. Jun and H. J. Kimet, Int. J. Hydrogen Energy 37, 14217 (2012).

    Article  CAS  Google Scholar 

  15. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong and K.P. Loh, Chem. Mater. 21, 2950 (2009).

    Article  CAS  Google Scholar 

  16. D. R. Dreyer, S. Park, C.W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  CAS  Google Scholar 

  17. S. D. Perera, A. D. Liyanage, N. Nijem, J. P. Ferraris, Y. J. Chabal, K. J. Balkus Jr. J. Power Sources 230, 130 (2013).

    Article  CAS  Google Scholar 

  18. B. Hirschon, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, J. Electrochem. Soc. 157, C452–C457 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Aberg, B. & Carrizosa, S.B. Hydrothermal Synthesis of Vanadium Pentoxides–Reduced Graphene Oxide Composite Electrodes for Enhanced Electrochemical Energy Storage. MRS Advances 1, 3049–3055 (2016). https://doi.org/10.1557/adv.2016.480

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.480

Navigation