Skip to main content

Advertisement

Log in

La0.75Sr0.25Cr0.5Mn0.5O3/Graphene Oxide-Based Composite Electrodes for Energy Storage Applications

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM)/graphene oxide (GO)-based composite electrodes are developed for energy storage applications. LSCM was synthesized by solution combustion method and GO by improved Hummers’ method. Synthesized active materials at appropriate ratios (GO and LSCM) were mixed in polyvinylidene fluoride by vacuum centrifuge mixing (VCM) to prepare a composite dispersion of GO and LSCM which was coated on porous Ni foam using the VCM. The effect of GO content on specific capacitance (Csp) of LSCM was studied by varying GO content from 1 to 7 wt%. Both as-synthesized perovskite and GO were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. Electrochemical characterization of the electrodes was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in 3 M KOH. CV measurements revealed that LSCM electrode showed maximum Csp of 751 Fg−1 at 1 mVs−1. By increasing GO content from 0 to 5 wt % in composite electrodes, Csp was increased from 751 to 1223 Fg−1, respectively. Further, evaluation of CV results revealed that predominant charge storage mechanism of electrodes was Faradic in nature which exhibited distinct redox peaks. EIS revealed that LSCM-5%GO electrode showed the lowest solution resistance, charge transfer resistance and highest double layer capacitance among other electrodes. Furthermore, the LSCM-5%GO electrode showed 93% charge retention after 3000 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, Z.; Zhang, W.; Yuan, C.; Su, Y.: Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties. RSC Adv. 7(21), 12931–12937 (2017)

    Article  Google Scholar 

  2. Rai, A.; Sharma, A.; Thakur, A.K.: Evaluation of aluminium doped lanthanum ferrite based electrodes for supercapacitor design. Solid State Ion. 262, 230–233 (2014)

    Article  Google Scholar 

  3. Simon, P.; Gogotsi, Y.: Materials for electrochemical capacitors. Nanosci. Technol. Collect. Rev. Nat. J. 320–329 (2010)

  4. Guo, Y.G.; Hu, J.S.; Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008)

    Article  Google Scholar 

  5. Bruce, P.G.; Scrosati, B.; Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008)

    Article  Google Scholar 

  6. Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Mater. Sustain. Energy Collect. Peer-rev. Res. Rev. Artic. Nat. Publ. Group 148–159 (2011)

  7. Liu, F.; Wang, X.; Hao, J.; Han, S.; Lian, J.; Jiang, Q.: High density arrayed Ni/NiO core-shell nanospheres evenly distributed on graphene for ultrahigh performance supercapacitor. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  8. Winter, M.: What are Batteries, Fuel Cells, and Supercapacitors? ACS Publications, Washington (2004)

    Google Scholar 

  9. Raj, T.V.; Hoskeri, P.A.; Muralidhara, H.; Manjunatha, C.; Kumar, K.Y.; Raghu, M.: Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. J. Electroanal. Chem. 858, 113830 (2020)

    Article  Google Scholar 

  10. Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H.: Ni (OH) 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)

    Article  Google Scholar 

  11. Yang, G.-W.; Xu, C.-L.; Li, H.-L.: Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. (48), 6537–6539 (2008)

  12. Tian, Y.: Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sources 359, 332–339 (2017)

    Article  Google Scholar 

  13. Fan, Z.: Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. A Appl. Sci. Manuf. 39(3), 540–554 (2008)

    Article  Google Scholar 

  14. Yu, D.: Decorating nanoporous ZIF-67-derived NiCo 2 O 4 shells on a Co 3 O 4 nanowire array core for battery-type electrodes with enhanced energy storage performance. J. Mater. Chem. A 4(28), 10878–10884 (2016)

    Article  Google Scholar 

  15. Porada, S.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58(8), 1388–1442 (2013)

    Article  Google Scholar 

  16. Gao, Z.: Microstructural design of hybrid CoO@ NiO and graphene nano-architectures for flexible high performance supercapacitors. J. Mater. Chem. A 3(28), 14833–14844 (2015)

    Article  Google Scholar 

  17. Liao, Q.: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5), 5310–5317 (2015)

    Article  Google Scholar 

  18. Zhai, T.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017)

    Article  Google Scholar 

  19. Zhu, Q.: Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment. Chem. Eng. J. 321, 554–563 (2017)

    Article  Google Scholar 

  20. Cheng, S.: Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy 9, 161–167 (2014)

    Article  Google Scholar 

  21. Xiong, X.: Three-dimensional ultrathin Ni (OH) 2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11, 154–161 (2015)

    Article  Google Scholar 

  22. Sahoo, S.; Shim, J.-J.: Facile synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustain. Chem. Eng. 5(1), 241–251 (2017)

    Article  Google Scholar 

  23. Patil, S.B.; Raghu, M.; Kishore, B.; Nagaraju, G.: Enhanced electrochemical performance of few-layered MoS 2–rGO nanocomposite for lithium storage application. J. Mater. Sci. Mater. Electron. 30(1), 316–322 (2019)

    Article  Google Scholar 

  24. Kumar, K.Y.; Saini, H.; Pandiarajan, D.; Prashanth, M.; Parashuram, L.; Raghu, M.: Controllable synthesis of TiO2 chemically bonded graphene for photocatalytic hydrogen evolution and dye degradation. Catal. Today 340, 170–177 (2020)

    Article  Google Scholar 

  25. Wang, X.W.; Wang, X.E.; Zhang, H.C.; Zhu, Q.Q.; Zheng, D.L.; Sun, L.Y.: Preparation and electrochemical properties of LaMnO3 powder as a supercapacitor electrode material. In: Key Engineering Materials, pp. 698–704. Trans Tech Publications Ltd, Switzerland (2017)

    Google Scholar 

  26. Tian, H.; Lang, X.; Nan, H.; An, P.; Zhang, W.; Hu, X.; Zhang, J.: Nanosheet-assembled LaMnO3@ NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochim. Acta 318, 651–659 (2019)

    Article  Google Scholar 

  27. Hu, X.; Nan, H.; Liu, M.; Liu, S.; An, T.; Tian, H.: Battery-like MnCo2O4 electrode materials combined with active carbon for hybrid supercapacitors. Electrochim. Acta 306, 599–609 (2019)

    Article  Google Scholar 

  28. Gómez-Pérez, A.; Azcondo, M.T.; Yuste, M.; Pérez-Flores, J.C.; Bonanos, N.; Porcher, F.; Muñoz-Noval, A.; Hoelzel, M.; García-Alvarado, F.; Amador, U.: The A-cation deficient perovskite series La 2–x CoTiO 6− δ (0≤ x≤ 0.20): new components for potential SOFC composite cathodes. J. Mater. Chem. A 4(9), 3386–3397 (2016)

    Article  Google Scholar 

  29. Cao, Y.; Lin, B.; Sun, Y.; Yang, H.; Zhang, X.: Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-substitution. Electrochim. Acta 178, 398–406 (2015)

    Article  Google Scholar 

  30. Wang, X.; Zhu, Q.; Wang, X.; Zhang, H.; Zhang, J.; Wang, L.: Structural and electrochemical properties of La0. 85Sr0. 15MnO3 powder as an electrode material for supercapacitor. J. Alloys Compd. 675, 195–200 (2016)

    Article  Google Scholar 

  31. Cao, Y.; Lin, B.; Sun, Y.; Yang, H.; Zhang, X.: Structure, morphology and electrochemical properties of LaxSr1− xCo0. 1Mn0. 9O3− δ perovskite nanofibers prepared by electrospinning method. J. Alloys Compd. 624, 31–39 (2015)

    Article  Google Scholar 

  32. Mefford, J.T.; Hardin, W.G.; Dai, S.; Johnston, K.P.; Stevenson, K.J.: Anion charge storage through oxygen intercalation in LaMnO 3 perovskite pseudocapacitor electrodes. Nat. Mater. 13(7), 726–732 (2014)

    Article  Google Scholar 

  33. Cao, Y.; Lin, B.; Sun, Y.; Yang, H.; Zhang, X.: Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. J. Alloy. Compd. 638, 204–213 (2015)

    Article  Google Scholar 

  34. Liu, Y.; Dinh, J.; Tade, M.O.; Shao, Z.: Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect. ACS Appl. Mater. Interfaces 8(36), 23774–23783 (2016)

    Article  Google Scholar 

  35. Zhao, W.; Chen, G.: Exfoliation of Graphite toward Graphene from Lab to Industry. Graphite, Graphene, and Their Polymer Nanocomposites, p. 169. Taylor & Francis, USA (2012)

    Google Scholar 

  36. Züttel, A.; Sudan, P.; Mauron, P.; Wenger, P.: Model for the hydrogen adsorption on carbon nanostructures. Appl. Phys. A 78(7), 941–946 (2004)

    Article  Google Scholar 

  37. Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.; Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507–514 (2001)

    Article  Google Scholar 

  38. Xia, J.; Chen, F.; Li, J.; Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505 (2009)

    Article  Google Scholar 

  39. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  40. Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)

    Article  Google Scholar 

  41. Zhang, X.; Zhang, H.; Li, C.; Wang, K.; Sun, X.; Ma, Y.: Recent advances in porous graphene materials for supercapacitor applications. RSC Adv. 4(86), 45862–45884 (2014)

    Article  Google Scholar 

  42. Mao, X.; Yang, W.; He, X.; Chen, Y.; Zhao, Y.; Zhou, Y.; Yang, Y.; Xu, J.: The preparation and characteristic of poly (3, 4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode. Mater. Sci. Eng. B 216, 16–22 (2017)

    Article  Google Scholar 

  43. Phiri, J.; Gane, P.; Maloney, T.C.: General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B 215, 9–28 (2017)

    Article  Google Scholar 

  44. Lang, X.; Sun, X.; Liu, Z.; Nan, H.; Li, C.; Hu, X.; Tian, H.: Ag nanoparticles decorated perovskite La0. 85Sr0. 15MnO3 as electrode materials for supercapacitors. Mater. Lett. 243, 34–37 (2019)

    Article  Google Scholar 

  45. Elsiddig, Z.A.; Wang, D.; Xu, H.; Zhang, W.; Zhang, T.; Zhang, P.; Tian, W.; Sun, Z.; Chen, J.: Three-dimensional nitrogen-doped graphene wrapped LaMnO 3 nanocomposites as high-performance supercapacitor electrodes. J. Alloys Compd. 740, 148–155 (2018)

    Article  Google Scholar 

  46. Liu, P.; Liu, J.; Cheng, S.; Cai, W.; Yu, F.; Zhang, Y.; Wu, P.; Liu, M.: A high-performance electrode for supercapacitors: Silver nanoparticles grown on a porous perovskite-type material La0. 7Sr0. 3CoO3− δ substrate. Chem. Eng. J. 328, 1–10 (2017)

    Article  Google Scholar 

  47. Galal, A.; Hassan, H.K.; Jacob, T.; Atta, N.F.: Enhancing the specific capacitance of SrRuO 3 and reduced graphene oxide in NaNO 3, H 3 PO 4 and KOH electrolytes. Electrochim. Acta 260, 738–747 (2017)

    Article  Google Scholar 

  48. Zaaba, N.; Foo, K.; Hashim, U.; Tan, S.; Liu, W.-W.; Voon, C.: Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  Google Scholar 

  49. Rehman, Z.U.; Raza, M.A.; Tariq, A.; Chishti, U.N.; Maqsood, M.F.; Lee, N.; Awais, M.H.; Mehdi, S.M.Z.; Inam, A.: La0. 75Sr0. 25Cr0. 5Mn0. 5O3 perovskite developed for supercapacitor applications. J. Energy Storage 32, 101951 (2020)

    Article  Google Scholar 

  50. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  51. Cao, A.; Xu, C.; Liang, J.; Wu, D.; Wei, B.: X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem. Phys. Lett. 344(1–2), 13–17 (2001)

    Article  Google Scholar 

  52. Tao, S.; Irvine, J.T.: Synthesis and characterization of (La0 75Sr0 25) Cr0 5Mn0 5 O 3− δ, a Redox-Stable, efficient perovskite anode for SOFCs. J. Electrochem. Soc. 151(2), A252 (2004)

    Article  Google Scholar 

  53. Cao, Y.; Lin, B.; Sun, Y.; Yang, H.; Zhang, X.: Sr-doped lanthanum nickelate nanofibers for high energy density supercapacitors. Electrochim. Acta 174, 41–50 (2015)

    Article  Google Scholar 

  54. Raza, M.A.; Maqsood, M.F.; Rehman, Z.U.; Westwood, A.; Inam, A.; Sattar, M.M.S.; Ghauri, F.A.; Ilyas, M.T.: Thermally reduced graphene oxide-reinforced acrylonitrile butadiene styrene composites developed by combined solution and melt mixing method. Arab. J. Sci. Eng. 45(11), 9559–9568 (2020)

    Article  Google Scholar 

  55. Wang, T.; Wang, L.-X.; Wu, D.-L.; Xia, W.; Jia, D.-Z.: Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  56. Yang, W.; Xu, X.; Tu, Z.; Li, Z.; You, B.; Li, Y.; Raj, S.I.; Yang, F.; Zhang, L.; Chen, S.: Nitrogen plasma modified CVD grown graphene as counter electrodes for bifacial dye-sensitized solar cells. Electrochim. Acta 173, 715–720 (2015)

    Article  Google Scholar 

  57. Yang, W.; Xu, X.; Hou, L.; Ma, X.; Yang, F.; Wang, Y.; Li, Y.: Insight into the topological defects and dopants in metal-free holey graphene for triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. A 5(12), 5952–5960 (2017)

    Article  Google Scholar 

  58. Kang, Y.; Deng, C.; Chen, Y.; Liu, X.; Liang, Z.; Li, T.; Hu, Q.; Zhao, Y.: Binder-free electrodes and their application for li-ion batteries. Nanoscale Res. Lett. 15, 1–19 (2020)

    Article  Google Scholar 

  59. Nian, Y.-R.; Teng, H.: Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J. Electrochem. Soc. 149(8), A1008 (2002)

    Article  Google Scholar 

  60. Come, J.; Taberna, P.-L.; Hamelet, S.; Masquelier, C.; Simon, P.: Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J. Electrochem. Soc. 158(10), A1090 (2011)

    Article  Google Scholar 

  61. Iqbal, M.Z.; Haider, S.S.; Siddique, S.; Karim, M.R.A.; Zakar, S.; Tayyab, M.; Faisal, M.M.; Sulman, M.; Khan, A.; Baghayeri, M.: Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J. Energy Storage 27, 101056 (2020)

    Article  Google Scholar 

  62. Ardizzone, S.; Fregonara, G.; Trasatti, S.: “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35(1), 263–267 (1990)

    Article  Google Scholar 

  63. Faraji, S.; Ani, F.N.: Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors–a review. J. Power Sources 263, 338–360 (2014)

    Article  Google Scholar 

  64. Yavarinasab, A.; Janfaza, S.; Tasnim, N.; Tahmooressi, H.; Dalili, A.; Hoorfar, M.: Graphene/poly (methyl methacrylate) electrochemical impedance-transduced chemiresistor for detection of volatile organic compounds in aqueous medium. Anal. Chim. Acta 1109, 27–36 (2020)

    Article  Google Scholar 

  65. Yavarinasab, A.; Janfaza, S.; Tahmooressi, H.; Ghazi, M.; Tasnim, N.; Hoorfar, M.: A selective polypyrrole-based sub-ppm impedimetric sensor for the detection of dissolved hydrogen sulfide and ammonia in a mixture. J. Hazard. Mater. 416, 125892 (2021)

    Article  Google Scholar 

  66. Elsiddig, Z.A.; Wang, D.; Xu, H.; Zhang, W.; Zhang, T.; Zhang, P.; Tian, W.; Sun, Z.; Chen, J.: Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes. J. Alloy. Compd. 740, 148–155 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank higher education commission of Pakistan (HEC) for providing financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ali Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur Rehman, Z., Raza, M.A. La0.75Sr0.25Cr0.5Mn0.5O3/Graphene Oxide-Based Composite Electrodes for Energy Storage Applications. Arab J Sci Eng 47, 6365–6377 (2022). https://doi.org/10.1007/s13369-021-06345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06345-5

Keywords

Navigation