Skip to main content

Advertisement

Log in

Synthesis of highly efficient asphalt-based carbon for adsorption of polycyclic aromatic hydrocarbons and diesel from emulsified aqueous phase

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This work reports the syntheses of an inexpensive and efficient asphalt-derived mesoporous carbon (AdMC) as an adsorbent. The adsorbent was activated with potassium hydroxide to increase its surface area and then characterized by SEM–EDS, FT-IR, and BET. The adsorption properties of AdMC were evaluated for the adsorptive removal of eleven Poly Aromatic Hydrocarbons (PAHs) and diesel from water samples. The prepared AdMC showed very high surface areas and high micropore volumes equal to 2316 m2/g and 1.2 cm3/g, respectively. Various experimental conditions influencing the adsorption capacity of eleven PAHs and diesel were investigated. At high concentrations, PAHs and diesel solubility in water is very low. Hence, samples were emulsified with a surfactant, and then maximum adsorption capacity was investigated. Adsorption profile of individual PAHs was examined using gas chromatography/mass spectrometry analysis followed by liquid–liquid extraction. Total hydrocarbon removal was studied using a total organic analyzer. Asphalt-derived mesoporous sorbent showed an extreme ability to remove PAHs and diesel (average adsorption capacity of 166 mg/g for individual PAHs and diesel (maximum capacity of 1600 mg/g). The experimental results fitted the Langmuir model with a correlation efficiency of 0.9853. The results obtained for both adsorbents also matched to pseudo-second-order kinetics, suggesting that the adsorption of PAHs and diesel is chemical, monolayer, and homogeneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Srivastava P, Sreekrishnan TR, Nema AK (2018) Polyaromatic hydrocarbons: review of a global environmental issue. J Hazard Toxic Radioact Waste 22:04018004. https://doi.org/10.1061/(asce)hz.2153-5515.0000391

    Article  CAS  Google Scholar 

  2. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195. https://doi.org/10.1007/s10311-007-0095-0

    Article  CAS  Google Scholar 

  3. Chen SJ, Luo XJ, Mai BX, Sheng GY, Fu JM, Zeng EY (2006) Distribution and mass inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in sediments of the pearl river estuary and the northern South China Sea. Environ Sci Technol 40:709–714. https://doi.org/10.1021/es052060g

    Article  CAS  Google Scholar 

  4. Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Yaghoobi Z, Kong Yap C, Maisano M, Cappello T (2019) Distributions and compositional patterns of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in three edible fishes from Kharg coral Island, Persian Gulf, Iran. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.10.092

    Article  Google Scholar 

  5. Iwegbue CMA, Ogbuta AA, Otutu JO, Obi G, Egobueze FE, Martincigh BS (2019) Evaluation of human exposure to polycyclic aromatic hydrocarbons from some edible oils and shea butter in Nigeria. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2019.1570951

    Article  Google Scholar 

  6. Sosa D, Hilber I, Faure R, Bartolomé N, Fonseca O, Keller A, Bucheli TD, Escobar A (2019) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban and semi-urban soils of Havana, Cuba. J Soils Sedim 19:1328–1341. https://doi.org/10.1007/s11368-018-2137-6

    Article  CAS  Google Scholar 

  7. Liu J, Zhang J, Zhan C, Liu H, Zhang L, Hu T, Xing X, Qu C (2018) Polycyclic aromatic hydrocarbons (PAHs) in Urban Street Dust of Huanggang, Central China: status, sources and human health risk assessment. Aerosol Air Qual Res 19:221–233. https://doi.org/10.4209/aaqr.2018.02.0048

    Article  CAS  Google Scholar 

  8. Ncube S, Madikizela L, Cukrowska E, Chimuka L (2018) Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. TrAC Trends Anal Chem 99:101–116. https://doi.org/10.1016/J.TRAC.2017.12.007

    Article  CAS  Google Scholar 

  9. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  10. Zhang X, Yu T, Li X, Yao J, Liu W, Chang S, Chen Y (2019) The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: a review. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2019.1579619

    Article  Google Scholar 

  11. Huang Y, Zhang W, Ruan G, Li X, Cong Y, Du F, Li J (2018) Reduced graphene oxide-hybridized polymeric high-internal phase emulsions for highly efficient removal of polycyclic aromatic hydrocarbons from water matrix. Langmuir 34:3661–3668. https://doi.org/10.1021/acs.langmuir.8b00005

    Article  CAS  Google Scholar 

  12. Eeshwarasinghe D, Loganathan P, Kalaruban M, Sounthararajah DP, Kandasamy J, Vigneswaran S (2018) Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies. Environ Sci Pollut Res 25:13511–13524. https://doi.org/10.1007/s11356-018-1518-0

    Article  CAS  Google Scholar 

  13. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114. https://doi.org/10.1002/em.20095

    Article  CAS  Google Scholar 

  14. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer, Asian Pac J Trop Biomed 5:182–189. https://doi.org/10.1016/S2221-1691(15)30003-4

    Article  CAS  Google Scholar 

  15. Oranuba E, Deng H, Peng J, Dawsey SM, Kamangar F (2018) Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate. J Environ Sci Health Part C. https://doi.org/10.1080/10590501.2019.1555323

    Article  Google Scholar 

  16. Karacik B, Okay OS, Henkelmann B, Bernhöft S, Schramm KW (2009) Polycyclic aromatic hydrocarbons and effects on marine organisms in the Istanbul Strait. Environ Int 35:599–606. https://doi.org/10.1016/j.envint.2008.11.005

    Article  CAS  Google Scholar 

  17. Lamichhane S, Bal Krishna KC, Sarukkalige R (2016) Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148:336–353. https://doi.org/10.1016/j.chemosphere.2016.01.036

    Article  CAS  Google Scholar 

  18. Chen B, Yuan M, Liu H (2011) Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. J Hazard Mater 188:436–442. https://doi.org/10.1016/J.JHAZMAT.2011.01.114

    Article  CAS  Google Scholar 

  19. Xi Z, Chen B (2014) Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. J Environ Sci 26:737–748. https://doi.org/10.1016/S1001-0742(13)60501-X

    Article  CAS  Google Scholar 

  20. Changchaivong S, Khaodhiar S (2009) Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite. Appl Clay Sci 43:317–321. https://doi.org/10.1016/j.clay.2008.09.012

    Article  CAS  Google Scholar 

  21. Bruna F, Celis R, Real M, Cornejo J (2012) Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil–water systems. J Hazard Mater 225–226:74–80. https://doi.org/10.1016/J.JHAZMAT.2012.04.064

    Article  Google Scholar 

  22. Ceylan D, Dogu S, Karacik B, Yakan SD, Okay OS, Okay O (2009) Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ Sci Technol 43:3846–3852. https://doi.org/10.1021/es900166v

    Article  CAS  Google Scholar 

  23. Vidal CB, Barros AL, Moura CP, de Lima ACA, Dias FS, Vasconcellos LCG, Fechine PBA, Nascimento RF (2011) Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica. J Colloid Interface Sci 357:466–473. https://doi.org/10.1016/J.JCIS.2011.02.013

    Article  CAS  Google Scholar 

  24. Luo Y-B, Cheng J-S, Ma Q, Feng Y-Q, Li J-H (2011) Graphene-polymer composite: extraction of polycyclic aromatic hydrocarbons from water samples by stir rod sorptive extraction. Anal Methods 3:92–98. https://doi.org/10.1039/C0AY00624F

    Article  CAS  Google Scholar 

  25. Ho W-L, Liu Y-Y, Lin T-C (2011) Development of molecular imprinted polymer for selective adsorption of benz[a]pyrene among airborne polycyclic aromatic hydrocarbon compounds. Environ Eng Sci 28:421–434. https://doi.org/10.1089/ees.2010.0268

    Article  CAS  Google Scholar 

  26. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861. https://doi.org/10.1021/es052208w

    Article  CAS  Google Scholar 

  27. Zhang S, Shao T, Kose HS, Karanfil T (2010) Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ Sci Technol 44:6377–6383

    Article  CAS  Google Scholar 

  28. Yuan M, Tong S, Zhao S, Jia CQ (2010) Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J Hazard Mater 181:1115–1120. https://doi.org/10.1016/J.JHAZMAT.2010.05.130

    Article  CAS  Google Scholar 

  29. Qiao K, Tian W, Bai J, Dong J, Zhao J, Gong X, Liu S (2018) Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution. Ecotoxicol Environ Saf 149:80–87. https://doi.org/10.1016/J.ECOENV.2017.11.027

    Article  CAS  Google Scholar 

  30. Cheng H, Bian Y, Wang F, Jiang X, Ji R, Gu C, Yang X, Song Y (2019) Green conversion of crop residues into porous carbons and their application to efficiently remove polycyclic aromatic hydrocarbons from water: sorption kinetics, isotherms and mechanism. Bioresour Technol 284:1–8. https://doi.org/10.1016/j.biortech.2019.03.104

    Article  CAS  Google Scholar 

  31. Kumar JA, Amarnath DJ, Sathish S, Jabasingh SA, Saravanan A, Hemavathy RV, Anand KV, Yaashikaa PR (2019) Enhanced PAHs removal using pyrolysis-assisted potassium hydroxide induced palm shell activated carbon: batch and column investigation. J Mol Liq 279:77–87. https://doi.org/10.1016/j.molliq.2019.01.121

    Article  CAS  Google Scholar 

  32. Eeshwarasinghe D, Loganathan P, Vigneswaran S (2019) Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 223:616–627. https://doi.org/10.1016/j.chemosphere.2019.02.033

    Article  CAS  Google Scholar 

  33. Rodenas M, Amoros D, Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon NY 41:267–275

    Article  Google Scholar 

  34. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. J Hazard Mater 166:1514–1521. https://doi.org/10.1016/j.jhazmat.2008.12.080

    Article  CAS  Google Scholar 

  35. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanospace engineering of KOH activated carbon. Nanotechnology. https://doi.org/10.1088/0957-4484/23/1/015401

    Article  Google Scholar 

  36. Saleh TA, Danmaliki GI (2016) Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes. J Taiwan Inst Chem Eng 60:460–468. https://doi.org/10.1016/j.jtice.2015.11.008

    Article  CAS  Google Scholar 

  37. Jalilov AS, Ruan G, Hwang CC, Schipper DE, Tour JJ, Li Y, Fei H, Samuel ELG, Tour JM (2015) Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. ACS Appl Mater Interfaces 7:1376–1382. https://doi.org/10.1021/am508858x

    Article  CAS  Google Scholar 

  38. Jalilov AS, Li Y, Tian J, Tour JM (2017) Ultra-high surface area activated porous asphalt for CO2 capture through competitive adsorption at high pressures. Adv Energy Mater 7:1–7. https://doi.org/10.1002/aenm.201600693

    Article  CAS  Google Scholar 

  39. Su J, Gao P, Laux SJ, Ma LQ, Townsend TG (2019) Contribution of asphalt products to total and bioaccessible polycyclic aromatic hydrocarbons. Int J Environ Res. https://doi.org/10.1007/s41742-019-00189-6

    Article  Google Scholar 

  40. Burstyn I, Randem B, Lien JE, Langård S, Kromhout H, Bitumen (2002) Polycyclic aromatic hydrocarbons and vehicle exhaust: exposure levels and controls among Norwegian asphalt workers. Ann Occup Hyg 46:79–87. https://doi.org/10.1093/annhyg/mef023

    Article  CAS  Google Scholar 

  41. Burstyn I, Boffetta P, Heederik D, Partanen T, Kromhout H, Svane O, Langård S, Frentzel-Beyme R, Kauppinen T, Stücker I, Shaham J, Ahrens W, Cenée S, Ferro G, Heikkilä P, Hooiveld M, Johansen C, Randem BG, Schill W (2003) Mortality from obstructive lung diseases and exposure to polycyclic aromatic hydrocarbons among asphalt workers. Am J Epidemiol 158:468–478. https://doi.org/10.1093/aje/kwg180

    Article  Google Scholar 

  42. McClean MD, Rinehart RD, Ngo L, Eisen EA, Kelsey KT, Wiencke JK, Herrick RF (2004) Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers. Ann Occup Hyg 48:565–578. https://doi.org/10.1093/annhyg/meh044

    Article  CAS  Google Scholar 

  43. Burstyn I, Kromhout H, Johansen C, Langard S, Kauppinen T, Shaham J, Ferro G, Boffetta P (2007) Bladder cancer incidence and exposure to polycyclic aromatic hydrocarbons among asphalt pavers. Occup Environ Med 64:520–526. https://doi.org/10.1136/oem.2006.029801

    Article  CAS  Google Scholar 

  44. USEPA (2007) Method 625—Base/neutrals and acids. https://www.epa.gov/sites/production/files/2015-10/documents/method_625_1984.pdf

  45. Saleh TA, Gupta VK, Al-Saadi AA (2013) Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: experimental and computational study. J Colloid Interface Sci 396:264–269. https://doi.org/10.1016/j.jcis.2013.01.037

    Article  CAS  Google Scholar 

  46. Saleh TA, Danmaliki GI (2016) Adsorptive desulfurization of dibenzothiophene from fuels by rubber tyres-derived carbons: kinetics and isotherms evaluation. Process Saf Environ Prot 102:9–19. https://doi.org/10.1016/j.psep.2016.02.005

    Article  CAS  Google Scholar 

  47. Costa JAS, de Jesus RA, da Silva CMP, Romão LPC (2017) Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. Powder Technol. https://doi.org/10.1016/j.powtec.2016.12.035

    Article  Google Scholar 

  48. Bhadra BN, Song JY, Lee S-K, Hwang YK, Jhung SH (2018) Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. J Hazard Mater 344:1069–1077. https://doi.org/10.1016/J.JHAZMAT.2017.11.057

    Article  CAS  Google Scholar 

  49. Diraki A, Mackey HR, Mckay G, Abdala A (2019) Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. J Environ Chem Eng 7(3):103106. https://doi.org/10.1016/j.jece.2019.103106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia, for funding this work through project number IN171031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanbasha Basheer.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alissa, F.M., Mohammed, D., Osman, A.M. et al. Synthesis of highly efficient asphalt-based carbon for adsorption of polycyclic aromatic hydrocarbons and diesel from emulsified aqueous phase. Carbon Lett. 30, 555–567 (2020). https://doi.org/10.1007/s42823-020-00126-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00126-0

Keywords

Navigation