Skip to main content
Log in

Adhesion and biofilm formation by two clinical isolates of Trichosporon Cutaneum in various environmental conditions

  • Fungal and Bacterial Physiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Trichosporon spp. is an emerging opportunistic pathogen and a common cause of both superficial and invasive infections. Although Trichosporon asahii is the most frequently isolated species, Trichosporon cutaneum is also widely observed, as it is the predominant agent in cases of white Piedra and onychomycosis. Trichosporon spp. is a known to produce biofilms, which serve as one of its virulence mechanisms, however, there is limited data available on biofilms formed by T. cutaneum. Thus, the aim of this study was to assess the adhesion and biofilm formation of two clinical isolates of T. cutaneum under various environmental conditions (including temperature, nutrient availability, and carbon source), as well as their tolerance to fluconazole. Adhesion was tested on common abiotic substrates (such as silicone, glass, and stainless steel), revealing that T. cutaneum readily adhered to all surfaces tested. CV staining was applied for the evaluation of the environment influence on biofilm efficiency and it was proved that the nutrient availability has a major impact. Additionaly, fluorescent staining was employed to visualize the morphology of T. cutaneum biofilm and its survival in the presence of fluconazole. Hyphae production was shown to play a role in elevated biofilm production in minimal medium and increased tolerance to fluconazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Montoya AM, González GM (2014) Trichosporon spp.: an emerging fungal pathogen. Med Universitaria 16(62):37–43. www.elsevier.com.mx

    Google Scholar 

  2. Mehta V, Nayyar C, Gulati N, Singla N, Rai S, Chandar J (2021) A Comprehensive Review of Trichosporon spp.: an invasive and emerging fungus. Cureus Published Online August 21:e17345. https://doi.org/10.7759/cureus.17345

    Article  Google Scholar 

  3. Matsumoto Y, Yoshikawa A, Nagamachi T, Sugiyama Y, Yamada T, Sugita T (2022) A critical role of calcineurin in stress responses, hyphal formation, and virulence of the pathogenic fungus Trichosporon Asahii. Sci Rep 12(1):16126. https://doi.org/10.1038/s41598-022-20507-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Andrade IB, Figueiredo-Carvalho MHG, Chaves AL da (2023) Metabolic and phenotypic plasticity may contribute for the higher virulence of Trichosporon asahii over other Trichosporonaceae members. Mycoses 66(5):430–440. https://doi.org/10.1111/myc.13562

    Article  CAS  PubMed  Google Scholar 

  5. Alonso VPP, Lemos JG, do Nascimento MdaS (2023) Yeast biofilms on abiotic surfaces: adhesion factors and control methods. Int J Food Microbiol 400:110265. https://doi.org/10.1016/j.ijfoodmicro.2023.110265

    Article  CAS  PubMed  Google Scholar 

  6. Costa-Orlandi CB, Sardi JCO, Pitangui NS et al (2017) Fungal biofilms and polymicrobial diseases. J Fungi 3(2):22. https://doi.org/10.3390/jof3020022

    Article  CAS  Google Scholar 

  7. Ramage G, Rajendran R, Sherry L, Williams C Fungal biofilm resistance. Int J Microbiol Published Online 2012:528521. https://doi.org/10.1155/2012/528521

  8. Zara G, Budroni M, Mannazzu I, Fancello F, Zara S (2020) Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 36(9):134. https://doi.org/10.1007/s11274-020-02911-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iturrieta-González IA, Padovan ACB, Bizerra FC, Hahn RC, Colombo AL (2014) Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B. PLoS ONE 9(10):e109553. https://doi.org/10.1371/journal.pone.0109553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cordeiro R, Serpa R, Alexandre CFVU et al (2015) Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. J Med Microbiol 64(11):1277–1286. https://doi.org/10.1099/jmm.0.000159

    Article  CAS  Google Scholar 

  11. Cordeiro R, de Aguiar A, da Silva ALR (2021) Trichosporon asahii and trichosporon inkin biofilms produce antifungal-tolerant Persister cells. Front Cell Infect Microbiol 11:645812. https://doi.org/10.3389/fcimb.2021.645812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colombo AL, Padovan ACB, Chaves GM (2011) Current knowledge of trichosporon spp. and trichosporonosis. Clin Microbiol Rev 24(4):682–700. https://doi.org/10.1128/CMR.00003-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maťátková O, Kolouchová I, Lokočová K et al (2021) Rhamnolipids as a tool for eradication of trichosporon cutaneum biofilm. Biomolecules 11(11). https://doi.org/10.3390/biom11111727

  14. Paldrychová M, Kolouchová I, Vaňková E et al (2019) Effect of resveratrol and Regrapex-R-forte on Trichosporon Cutaneum biofilm. Folia Microbiol (Praha) 64(1):73–81. https://doi.org/10.1007/s12223-018-0633-0

    Article  CAS  PubMed  Google Scholar 

  15. Tan Y, Leonhard M, Ma S, Schneider-Stickler B (2016) Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation. J Microbiol Methods 130:123–128. https://doi.org/10.1016/j.mimet.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  16. Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8(2):29. https://doi.org/10.3390/biom8020029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao Q, Cui Z, Zhang J, Bao J (2014) Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon Cutaneum. Bioresour Technol 152:552–556. https://doi.org/10.1016/j.biortech.2013.11.044

    Article  CAS  PubMed  Google Scholar 

  18. Chmielarz M, Blomqvist J, Sampels S, Sandgren M, Passoth V (2021) Microbial lipid production from crude glycerol and hemicellulosic hydrolysate with oleaginous yeasts. Biotechnol Biofuels 14(1):65. https://doi.org/10.1186/s13068-021-01916-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pumeesat P, Muangkaew W, Ampawong S, Luplertlop N (2017) Candida albicans biofilm development under increased temperature. New Microbiol 40:1121–7138

    Google Scholar 

  20. Casagrande Pierantoni D, Corte L, Casadevall A, Robert V, Cardinali G, Tascini C (2021) How does temperature trigger biofilm adhesion and growth in Candida albicans and two non-candida albicans Candida species? Mycoses 64(11):1412–1421. https://doi.org/10.1111/myc.13291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurakado S, Miyashita T, Chiba R, Sato C, Matsumoto Y, Sugita T (2021) Role of arthroconidia in biofilm formation by Trichosporon Asahii. Mycoses 64(1):42–47. https://doi.org/10.1111/myc.13181

    Article  CAS  PubMed  Google Scholar 

  22. Baillie GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679

    Article  PubMed  Google Scholar 

  23. Padovan ACB, Rocha WP da, Toti S, de Freitas de Jesus AC, Chaves DF, Colombo GM (2019) AL. Exploring the resistance mechanisms in Trichosporon asahii: Triazoles as the last defense for invasive trichosporonosis. Fungal Genetics and Biology. ;133:103267. https://doi.org/10.1016/j.fgb.2019.103267

  24. Huang M, Yang L, Zhou L et al (2022) Identification and functional characterization of ORF19.5274, a novel gene involved in both azoles susceptibility and hypha development in Candida albicans. Front Microbiol 13:990318. https://doi.org/10.3389/fmicb.2022.990318

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hashimoto T, Blumenthal HJ (1978) Survival and resistance of Trichophyton mentagrophytes Arthrospores. Appl Environ Microbiol 35:274–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mateusz Speruda for the help with fluorescence microscopy and Mariusz Dyląg for providing the strains of Trichosporon cutaneum.

Funding

This study was funded by the National Science Centre Poland (NCN) grant No. 2020/04/X/NZ9/00644.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Piecuch.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Rosana Puccia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piecuch, A., Cal, M. & Ogórek, R. Adhesion and biofilm formation by two clinical isolates of Trichosporon Cutaneum in various environmental conditions. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01321-1

Keywords

Navigation