Skip to main content
Log in

Effect of resveratrol and Regrapex-R-forte on Trichosporon cutaneum biofilm

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Microorganisms that cause chronic infections exist predominantly as surface-attached stable communities known as biofilms. Microbial cells in biofilms are highly resistant to conventional antibiotics and other forms of antimicrobial treatment; therefore, modern medicine tries to develop new drugs that exhibit anti-biofilm activity. We investigated the influence of a plant polyphenolic compound resveratrol (representative of the stilbene family) on the opportunistic pathogen Trichosporon cutaneum. Besides the influence on the planktonic cells of T. cutaneum, the ability to inhibit biofilm formation and to eradicate mature biofilm was studied. We have tested resveratrol as pure compound, as well as resveratrol in complex plant extract—the commercially available dietary supplement Regrapex-R-forte, which contains the extract of Vitis vinifera grape and extract of Polygonum cuspidatum root. Regrapex-R-forte is rich in stilbenes and other biologically active substances. Light microscopy imaging, confocal microscopy, and crystal violet staining were used to quantify and visualize the biofilm. The metabolic activity of biofilm-forming cells was studied by the tetrazolium salt assay. Amphotericin B had higher activity against planktonic cells; however, resveratrol and Regrapex-R-forte showed anti-biofilm effects, both in inhibition of biofilm formation and in the eradication of mature biofilm. The minimum biofilm eradicating concentration (MBEC80) for Regrapex-R-forte was found to be 2222 mg/L (in which resveratrol concentration is 200 mg/L). These methods demonstrated that Regrapex-R-forte can be employed as an anti-biofilm agent, as it has similar effect as amphotericin B (MBEC80 = 700 mg/L), which is routinely used in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  CAS  PubMed  Google Scholar 

  • Augustine N, Goel AK, Sivakumar KC, Ajay Kumar R, Thomas S (2014) Resveratrol – a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine 21:286–289

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Brackman G, Rigole P, De Witte E, Honraet K, Rossel B, Nelis HJ (2012) Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19:409–412

    Article  CAS  PubMed  Google Scholar 

  • Colombo AL, Padovan ACB, Chaves GM (2011) Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev 24:682–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589

    Article  CAS  PubMed  Google Scholar 

  • Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D'Antonio D, Piccolomini R (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50(10):3269–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridkin SK, Jarvis WR (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9:499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Herrera CL, Alvear M, Barrientos L, Montenegro G, Salazar LA (2010) The antifungal effect of six commercial extracts of Chilean propolis on Candida spp. Cienc Invest Agrar 37(1):75–84

    Google Scholar 

  • Houille B, Papon N, Boudesocque L, Bourdeaud E, Besseau S, Courdavault V, Enguehard-Gueiffier C, Delanoue G, Guerin L, Bouchara JP, Clastre M, Giglioli-Guivarch N, Guillard J, Lanoue A (2014) Antifungal activity of resveratrol derivatives against Candida species. J Nat Prod 77(7):1658–1662

    Article  CAS  PubMed  Google Scholar 

  • Iturrieta-Gonzalez IA, Padovan ACB, Bizerra FC, Hahn RC, Colombo AL (2014) Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B. PLoS One 9(10):e109553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JH, Seu YB, Lee DG (2007) Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J Microbiol Biotechnol 17(8):1324–1329

    Google Scholar 

  • Karimzadeh I, Khalili H, Farsaei S, Dashti-Khavidaki S, Sagheb MM (2013) Role of diuretics and lipid formulations in the prevention of amphotericin B-induced nephrotoxicity. Eur J Clin Pharmacol 69:1351–1368

    Article  CAS  PubMed  Google Scholar 

  • Kvasnickova E, Matatkova O, Cejkova A, Masak J (2015) Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods 118:106–112

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee DG (2015) Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. Curr Microbiol 70(3):383–389

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Cho HS, Joo SW, Chandra Regmi S, Kim JA, Ryu CM, Ryu SY, Cho MH, Lee J (2013) Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157: H7. Biofouling 29:1189–1203

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee H, Min H, Park K, Lee K, AhnY CY, Pyee J (2005) Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia 76:258–260

    Article  CAS  PubMed  Google Scholar 

  • Long J, Gao H, Sun L, Liu J, Zhao-Wilson X (2009) Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res 12(5):321–331

    Article  CAS  PubMed  Google Scholar 

  • López-Nicolás JM, Núñez-Delicado E, Pérez-López AJ, Barrachina ÁC, Cuadra-Crespo P (2006) Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography. J Chromatogr A 1135(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Mah TFC, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Melo AS, Bizerra FC, Freymuller E, Arthington-Skaggs BA, Colombo AL (2011) Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med Mycol 49(3):253–262

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3(286). https://doi.org/10.3389/fmicb.2012.00286

  • Morinaga N, Yahiro K, Noda M (2010) Resveratrol, a natural polyphenolic compound, inhibits cholera toxin-induced cyclic AMP accumulation in Vero cells. Toxicon 56:29–35

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  CAS  PubMed  Google Scholar 

  • Prokop J, Abrman P, Seligson AL, Sovak M (2006) Resveratrol and its glycon piceid are stable polyphenols. J Med Food 9(1):11–14

    Article  CAS  PubMed  Google Scholar 

  • Riihinen KR, Ou ZM, Gödecke T, Lankin DC, Pauli GF, Wu CD (2014) The antibiofilm activity of lingonberry flavonoids against oral pathogens is a case connected to residual complexity. Fitoterapia 97:78–86

    Article  CAS  PubMed  Google Scholar 

  • Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R (2014) Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods 105:134–140

    Article  CAS  PubMed  Google Scholar 

  • Seleem D, Pardi V, Murata RM (2017) Review of flavonoids: a diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol 76:76–83

    Article  CAS  PubMed  Google Scholar 

  • Silva WJD, Seneviratne J, Parahitiyawa N, Rosa EAR, Samaranayake LP, Cury AADB (2008) Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 19:364–369

    Article  PubMed  Google Scholar 

  • Thimothe J, Bonsi IA, Padilla-Zakour OI, Koo H (2007) Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. J Agric Food Chem 55:10200–10207

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Schulz B, Ruhnke M (2011) Resveratrol and its antifungal activity against Candida species. Mycoses 54(1):30–33

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Yagiz Y, Hs WY, Simonne A, Lu J, Marshall MR (2014) Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J Agric Food Chem 62(28):6640–6649

    Article  CAS  PubMed  Google Scholar 

  • Yousefbeyk F, Gohari AR, Hashemighahderijani Z, Ostad SN, Sourmaghi MHS, Amini M, Golfakhrabadi F, Jamalifar H, Amin G (2014) Bioactive terpenoids and flavonoids from Daucus littoralis Smith subsp. hyrcanicus Rech. f, an endemic species of Iran. Daru J Pharm Sci 22(1):12

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Czech Science Foundation (GACR) [17-15936S] and by the “Operational Programme Prague – Competitiveness” (CZ.2.16/3.1.00/24503) and the “National Program of Sustainability I” - NPU I (LO1601 - No.: MSMT-43760/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Maťátková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paldrychová, M., Kolouchová, I., Vaňková, E. et al. Effect of resveratrol and Regrapex-R-forte on Trichosporon cutaneum biofilm. Folia Microbiol 64, 73–81 (2019). https://doi.org/10.1007/s12223-018-0633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0633-0

Keywords

Navigation