Skip to main content
Log in

Exploring bacterial diversity in Arctic fjord sediments: a 16S rRNA–based metabarcoding portrait

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The frosty polar environment houses diverse habitats mostly driven by psychrophilic and psychrotolerant microbes. Along with traditional cultivation methods, next-generation sequencing technologies have become common for exploring microbial communities from various extreme environments. Investigations on glaciers, ice sheets, ponds, lakes, etc. have revealed the existence of numerous microorganisms while details of microbial communities in the Arctic fjords remain incomplete. The current study focuses on understanding the bacterial diversity in two Arctic fjord sediments employing the 16S rRNA gene metabarcoding and its comparison with previous studies from various Arctic habitats. The study revealed that Proteobacteria was the dominant phylum from both the fjord samples followed by Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Chloroflexi and Chlamydiae. A significant proportion of unclassified reads derived from bacteria was also detected. Psychrobacter, Pseudomonas, Acinetobacter, Aeromonas, Photobacterium, Flavobacterium, Gramella and Shewanella were the major genera in both the fjord sediments. The above findings were confirmed by the comparative analysis of fjord metadata with the previously reported (secondary metadata) Arctic samples. This study demonstrated the potential of 16S rRNA gene metabarcoding in resolving bacterial composition and diversity thereby providing new in situ insights into Arctic fjord systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

KGS:

Kongsfjorden sediment

KRS:

Krossfjorden sediment

rRNA:

Ribosomal RNA

MG-RAST:

Metagenomic Rast Server

MEGAN:

MEtaGenome ANalyser

References

  1. Overpeck J, Hughen K, Hardy D et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256. https://doi.org/10.1126/science.278.5341.1251

    Article  ADS  CAS  Google Scholar 

  2. Schuur EAG, Vogel JG, Crummer KG et al (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. https://doi.org/10.1038/nature08031

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Pearson RG, Phillips SJ, Loranty MM et al (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3:673–677. https://doi.org/10.1038/nclimate1858

    Article  ADS  Google Scholar 

  4. Hallbeck L (2009) Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting. SKB Rapport-09-37. https://www.skb.com/publication/1980061

  5. Zeng YX, Yan M, Yu Y et al (2013a) Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard. Arch Microbiol 195:313–322. https://doi.org/10.1007/s00203-013-0880-z

    Article  CAS  PubMed  Google Scholar 

  6. Hell K, Edwards A, Zarsky J et al (2013) The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME J 7:1814–1826. https://doi.org/10.1038/ismej.2013.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nowak A, Hodson A (2014) Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Broggerbreen, Svalbard. Polar Res 33:22779. https://doi.org/10.3402/polar.v33.22779

    Article  CAS  Google Scholar 

  8. Piquet AMT, van de Poll WH, Visser RJW et al (2014) Springtime phytoplankton dynamics in the Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11(8):2263–2279. https://doi.org/10.5194/bg-11-2263-2014

    Article  ADS  Google Scholar 

  9. Weslawski JM, Pedersen G, Falk-Petersen S, Porazinski K (2000) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42(1):57–69. www.iopan.gda.pl/oceanologia/421Wesl2.pdf

    Google Scholar 

  10. Svendsen H, Beszczynska-Møller A, Hagen JO et al (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166. https://doi.org/10.1111/j.1751-8369.2002.tb00072.x

    Article  Google Scholar 

  11. Cottier F, Tverberg V, Inall M et al (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden. Svalbard J Geophys Res 110:C12005. https://doi.org/10.1029/2004JC002757

    Article  ADS  Google Scholar 

  12. Hop H, Falk-Peterson S, Svendsen H et al (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231. https://doi.org/10.1016/j.pocean.2006.09.007

    Article  ADS  Google Scholar 

  13. Schlichtholz P, Goszczko I (2006) Interannual variability of the Atlantic water layer in the West Spitsbergen current at 76.5°N in summer 1991-2003. Deep-Sea Res Part I Oceanogr Res Pap 53(4):608–626. https://doi.org/10.1016/j.dsr.2006.01.001

    Article  ADS  Google Scholar 

  14. Master ER, Mohn WW (1998) Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 64(12):4823–4829. https://doi.org/10.1128/aem.64.12.4823-4829.1998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koyama A, Wallenstein MD, Simpson RT, Moore JC (2014) Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front Microbiol 5:516. https://doi.org/10.3389/fmicb.2014.00516

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schostag M, Stibal M, Jacobsen CS et al (2015) Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front Microbiol 6:399. https://doi.org/10.3389/fmicb.2015.00399

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mootapally C, Nathani NM, Solomon S, Subramanian B, Gadhvi IR (2020) Role of metagenomics in exploring marine microbiomes: current status and implications. In: Kim SK (ed) Encyclopedia of Marine Biotechnology. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119143802.ch82

    Chapter  Google Scholar 

  18. Choi H, Koh HW, Kim H et al (2016) Microbial community composition in the marine sediments of Jeju Island: next-generation sequencing surveys. J Microbiol Biotechnol 26(5):883–890. https://doi.org/10.4014/jmb.1512.12036

    Article  CAS  PubMed  Google Scholar 

  19. Papale M, Rappazzo AC, Mikkonen A et al (2020) Bacterial diversity in a dynamic and extreme sub-Arctic watercourse (Pasvik river, Norwegian Arctic). Water 12(11):3098. https://doi.org/10.3390/w12113098

    Article  Google Scholar 

  20. Mapelli F, Marasco R, Rizzi A et al (2011) Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines. Microb Ecol 61(2):438–447. https://doi.org/10.1007/s00248-010-9758-7

    Article  ADS  PubMed  Google Scholar 

  21. Fadeev E, Cardozo-Mino MG, Rapp JZ et al (2021) Comparison of two 16S rRNA primers (V3-V4 and V4-V5) for studies of Arctic microbial communities. Front Microbiol 12:637526. https://doi.org/10.3389/fmicb.2021.637526

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yan L, Qun L, Chaolun L et al (2015) Bacterial and archaeal community structures in the Arctic deep sea sediment. Acta Oceanol Sin 34(2):93–113. https://doi.org/10.1007/s13131-015-0624-9

    Article  CAS  Google Scholar 

  23. Wang NF, Zhang T, Yang X et al (2016) Diversity and composition of bacterial community in soils and lake sediments from an Arctic lake area. Front Microbiol 7:1170. https://doi.org/10.3389/fmicb.2016.01170

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anesio AM, Lutz S, Chrismas NAM, Benning LG (2017) The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3:10. https://doi.org/10.1038/s41522-017-0019-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Lopez E, Rodriguez-Lorente I, Alcazar P, Cid C (2019) Microbial communities in coastal glaciers and tidewater tongues of Svalbard Archipelago, Norway. Front Mar Sci 5:512. https://doi.org/10.3389/fmars.2018.00512

    Article  Google Scholar 

  26. Zeng YX, Yu Y, Li HR, Luo W (2017) Prokaryotic community composition in Arctic Kongsfjorden and Sub-Arctic Northern Bering Sea sediments as revealed by 454 Pyrosequencing. Front Microbiol 8:2498. https://doi.org/10.3389/fmicb.2017.02498

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kachiprath B, Puthumana J, Gopi J et al (2018) Amplicon sequencing based profiling of bacterial diversity from Krossfjorden, Arctic. Data Brief 21:2522–2525. https://doi.org/10.1016/j.dib.2018.11.101

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buongiorno J, Herbert LC, Wehrmann LM et al (2019) Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments. Appl Environ Microbiol 85(14):e00949–e00919. https://doi.org/10.1128/AEM.00949-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang XM, Zhang T, Li J et al (2019) Bacterial community pattern along the sediment seafloor of the Arctic fjorden (Kongsfjorden, Svalbard). Antonie Van Leeuwenhoek 112(8):1121–1136. https://doi.org/10.1007/s10482-019-01245-z

    Article  PubMed  Google Scholar 

  30. Delpech LM, Vonnahme TR, McGovern M et al (2021) Terrestrial inputs shape coastal bacterial and archaeal communities in a High Arctic Fjord (Isfjorden, Svalbard). Front Microbiol 12:614634. https://doi.org/10.3389/fmicb.2021.614634

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomas FA, Mohan M, Krishnan KP (2021) Bacterial diversity and their metabolic profiles in the sedimentary environments of Ny-Alesund, Arctic. Antonie Van Leeuwenhoek 114(9):1339–1360. https://doi.org/10.1007/s10482-021-01604-9

    Article  CAS  PubMed  Google Scholar 

  32. Vishnupriya S, Jabir T, Krishnan KP, Mohamed Hatha AA (2021) Bacterial community structure and functional profiling of high Arctic fjord sediments. World J Microbiol Biotechnol 37(8):133. https://doi.org/10.1007/s11274-021-03098-z

    Article  CAS  PubMed  Google Scholar 

  33. Wessel P, Smith WHF, Scharroo R et al (2013) Generic Mapping Tools: improved version released. Eos, Trans Am Geophys Union 94(45):409–410. https://doi.org/10.1002/2013EO450001

    Article  ADS  Google Scholar 

  34. Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3):Q03014. https://doi.org/10.1029/2008GC002332

    Article  ADS  Google Scholar 

  35. El Wakeel SK, Riley JP (1957) The determination of organic carbon in marine muds. ICES J Mar Sci 22(2):180–183. https://doi.org/10.1093/icesjms/22.2.180

    Article  Google Scholar 

  36. Wiseman JD, Bennett H (1940) The distribution of organic carbon and nitrogen in sediments from the Arabian Sea. John Murray Expedition 3(1940):93–221

    Google Scholar 

  37. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322. https://doi.org/10.1128/aem.62.2.316-322.1996

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175

    Google Scholar 

  39. Herlemann DPR, Labrenz M, Jürgens K et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5(10):1571–1579. https://doi.org/10.1038/ismej.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer F, Paarmann D, D'Souza M et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. https://doi.org/10.1186/1471-2105-9-386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485. https://doi.org/10.1186/1471-2105-11-485

    Article  PubMed  PubMed Central  Google Scholar 

  42. Keegan KP, Trimble WL, Wilkening J et al (2012) A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE. PLos Comput Biol 8(6):e1002541. https://doi.org/10.1371/journal.pcbi.1002541

  43. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  45. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huson DH, Beier S, Flade I et al (2016) MEGAN Community Edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12(6):e1004957. https://doi.org/10.1371/journal.pcbi.1004957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Zhou G, Ewald J et al (2023) MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res 51(W1):W310–W318. https://doi.org/10.1093/nar/gkad407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sinha RK, Krishnan KP, Kerkar S, Thresyamma DD (2017) Influence of glacial melt and Atlantic water on bacterioplankton community of Kongsfjorden, an Arctic fjord. Ecol Indic 82:143–151. https://doi.org/10.1016/j.ecolind.2017.06.051

    Article  Google Scholar 

  49. Lu Z, Cai M, Wang J et al (2013) Levels and distribution of trace metals in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic. Environ Geochem Health 35(2):257–269. https://doi.org/10.1007/s10653-012-9481-z

    Article  CAS  PubMed  Google Scholar 

  50. De Rovere F, Langone L, Schroeder K et al (2022) Water masses variability in inner Kongsfjorden (Svalbard) during 2010-2020. Front Mar Sci 9:741075. https://doi.org/10.3389/fmars.2022.741075

    Article  Google Scholar 

  51. Vipindas PV, Jabir T, Rehitha TV, Krishnan KP (2021) Distinct community composition and abundance of ammonia oxidizers in the high Arctic fjord sediments of Svalbard. J Soil Sediment 21:1890–1904. https://doi.org/10.1007/s11368-021-02905-2

    Article  CAS  Google Scholar 

  52. Kumar V, Tiwari M, Nagoji S, Tripathi S (2016) Evidence of anomalously low δ13C of marine organic matter in an Arctic Fjord. Sci Rep 6:36192. https://doi.org/10.1038/srep36192

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guruvayoorappan H, Miettinen A, Divine DV et al (2020) Ocean surface warming in Krossfjorden, Svalbard, during the last 60 years. Arktos 6:1–13. https://doi.org/10.1007/s41063-019-00071-x

    Article  Google Scholar 

  54. Kuliński K, Kędra M, Legeżyńska J et al (2014) Particulate organic matter sinks and sources in high Arctic fjord. J Mar Syst 139:27–37. https://doi.org/10.1016/j.jmarsys.2014.04.018

    Article  Google Scholar 

  55. Kumar P, Pattanaik JK, Khare N et al (2014) Study of 10Be in the sediments from the Krossfjorden and Kongfjorden Fjord system, Svalbard. J Radioanal Nucl Chem 302:903–909. https://doi.org/10.1007/s10967-014-3315-7

    Article  CAS  Google Scholar 

  56. Kumar P, Pattanaik JK, Khare N, Balakrishnan S (2018) Geochemistry and provenance study of sediments from Krossfjorden and Kongsfjorden, Svalbard (Arctic Ocean). Pol Sci 18:72–82. https://doi.org/10.1016/j.polar.2018.06.001

    Article  ADS  Google Scholar 

  57. Lokas E, Zaborska A, Kolicka M et al (2016) Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160:162–172. https://doi.org/10.1016/j.chemosphere.2016.06.051

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Dragon K, Marciniak M (2010) Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). J Hydrol 386(1-4):160–172. https://doi.org/10.1016/j.jhydrol.2010.03.017

    Article  CAS  Google Scholar 

  59. Grotti M, Soggia F, Ardini F et al (2017) Trace elements in surface sediments from Kongsfjorden, Svalbard: occurrence, sources and bioavailability. Int J Environ Anal Chem 97(5):401–418. https://doi.org/10.1080/03067319.2017.1317762

    Article  CAS  Google Scholar 

  60. Provencher JF, Mallory ML, Braune BM et al (2014) Mercury and marine birds in Arctic Canada: effects, current trends, and why we should be paying closer attention. Environ Rev 22(3):244–255. https://doi.org/10.1139/er-2013-0072

    Article  CAS  Google Scholar 

  61. Braune B, Chételat J, Amyot M et al (2015) Mercury in the marine environment of the Canadian Arctic: review of recent findings. Sci Total Environ 509-510:67–90. https://doi.org/10.1016/j.scitotenv.2014.05.133

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Ardini F, Bazzano A, Rivaro P et al (2016) Trace elements in marine particulate and surface sediments of Kongsfjorden, Svalbard islands. Rend Fis Acc Lincei 27(1):183–190. https://doi.org/10.1007/s12210-016-0524-8

    Article  Google Scholar 

  63. Perryman CR, Wirsing J, Bennett KA et al (2020) Heavy metals in the Arctic: distribution and enrichment of five metals in Alaskan soils. PloS One 15(6):e0233297. https://doi.org/10.1371/journal.pone.0233297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. AMAP Assessment 2002 (2005) Heavy metals in the Arctic. Published by Arctic Monitoring and Assessment Programme, Oslo

    Google Scholar 

  65. Macdonal RW, Barrie LA, Bidleman TF et al (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254(2-3):93–234. https://doi.org/10.1016/s0048-9697(00)00434-4

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Kozak K, Polkowska Ż, Stachnik Ł et al (2016) Arctic catchment as a sensitive indicator of the environmental changes: distribution and migration of metals (Svalbard). Int J Environ Sci Technol 13:2779–2796. https://doi.org/10.1007/s13762-016-1137-6

    Article  CAS  Google Scholar 

  67. Zhang G, Cao T, Ying J et al (2014) Diversity and novelty of actinobacteria in Arctic marine sediments. Antonie Van Leeuwenhoek 105(4):743–754. https://doi.org/10.1007/s10482-014-0130-7

    Article  CAS  PubMed  Google Scholar 

  68. McCann CM, Wade MJ, Gray ND et al (2016) Microbial communities in a High Arctic polar desert landscape. Front Microbiol 7:419. https://doi.org/10.3389/fmicb.2016.00419

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chu H, Fierer N, Lauber CL et al (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12(11):2998–3006. https://doi.org/10.1111/j.1462-2920.2010.02277.x

    Article  CAS  PubMed  Google Scholar 

  70. Cuthbertson L, Amores-Arrocha H, Malard LA et al (2017) Characterisation of Arctic bacterial communities in the air above Svalbard. Biology (Basel) 6(2):29. https://doi.org/10.3390/biology6020029

    Article  PubMed  Google Scholar 

  71. Tian F, Yong Y, Chen B et al (2009) Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol 32(1):93–103. https://doi.org/10.1007/s00300-008-0509-x

    Article  Google Scholar 

  72. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71(12):7806–7818. https://doi.org/10.1128/AEM.71.12.7806-7818.2005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amato P, Hennebelle R, Magand O et al (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59(2):255–264. https://doi.org/10.1111/j.1574-6941.2006.00198.x

    Article  CAS  PubMed  Google Scholar 

  74. Piquet AMT, Scheepens JF, Bolhuis H et al (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536. https://doi.org/10.1007/s00300-010-0841-9

    Article  Google Scholar 

  75. Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71(10):5710–5718. https://doi.org/10.1128/AEM.71.10.5710-5718.2005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Campbell BJ, Polson SW, Hanson TE et al (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12(7):1842–1854. https://doi.org/10.1111/j.1462-2920.2010.02189.x

    Article  CAS  PubMed  Google Scholar 

  77. Groudieva T, Kambourova M, Yusef H et al (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Artic sea ice, Spitzbergen. Extremophiles 8(6):475–488. https://doi.org/10.1007/s00792-004-0409-0

    Article  CAS  PubMed  Google Scholar 

  78. Zeng Y, Zou Y, Chen B et al (2011) Phylogenetic diversity of sediment bacteria in the northern Bering Sea. Polar Biol 34:907–919. https://doi.org/10.1007/s00300-010-0947-0

    Article  Google Scholar 

  79. Li H, Yu Y, Luo W et al (2009) Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13(2):233–246. https://doi.org/10.1007/s00792-009-0225-7

    Article  CAS  PubMed  Google Scholar 

  80. Hamdan LJ, Coffin RB, Sikaroodi M et al (2013) Ocean currents shape the microbiome of Arctic marine sediments. ISME J 7(4):685–696. https://doi.org/10.1038/ismej.2012.143

    Article  CAS  PubMed  Google Scholar 

  81. Zeng YX, Zhang F, He JF et al (2013b) Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek 103(6):1309–1319. https://doi.org/10.1007/s10482-013-9912-6

    Article  PubMed  Google Scholar 

  82. Alonso-Sáez L, Sánchez O, Gasol JM et al (2008) Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol 10(9):2444–2454. https://doi.org/10.1111/j.1462-2920.2008.01674.x

    Article  CAS  PubMed  Google Scholar 

  83. Müller O, Seuthe L, Bratbak G, Paulsen ML (2018) Bacterial response to permafrost derived organic matter input in an Arctic Fjord. Front Mar Sci 5:263. https://doi.org/10.3389/fmars.2018.00263

    Article  Google Scholar 

  84. Skidmore M, Anderson SP, Sharp M et al (2005) Comparison of microbial compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71(11):6986–6997. https://doi.org/10.1128/AEM.71.11.6986-6997.2005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cottrell MT, David KL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr 48(1):168–178. https://doi.org/10.4319/lo.2003.48.1.0168

    Article  ADS  Google Scholar 

  86. Garneau ME, Vincent W, Alonso-Sáez L et al (2006) Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem. Aquat Microb Ecol 42:27–40. https://doi.org/10.3354/ame042027

    Article  Google Scholar 

  87. Lin X, Zhang L, Liu Y, Li Y (2017) Bacterial and archaeal community structure of pan-Arctic Ocean sediments revealed by pyrosequencing. Acta Oceanol Sin 36:146–152. https://doi.org/10.1007/s13131-017-1030-2

    Article  Google Scholar 

  88. Nikrad MP, Cottrell MT, Kirchman DL (2012) Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter. Appl Environ Microbiol 78(7):2402–2409. https://doi.org/10.1128/AEM.07130-11

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sipler RE, Kellogg CTE, Connelly TL (2017) Microbial community response to terrestrially derived dissolved organic matter in the coastal Arctic. Front Microbiol 8:1018. https://doi.org/10.3389/fmicb.2017.01018

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stevenson TJ, Duddleston KN, Buck CL (2014) Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota. Appl Environ Microbiol 80(18):5611–5622. https://doi.org/10.1128/AEM.01537-14

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hatton JJ, Stevenson TJ, Buck CL, Duddleston KN (2017) Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure. Environ Microbiol 19(4):1518–1535. https://doi.org/10.1111/1462-2920.13712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cho H, Lee WY (2020) Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecol Evol 10(12):5582–5594. https://doi.org/10.1002/ece3.6299

    Article  PubMed  PubMed Central  Google Scholar 

  93. Venkatachalam S, Kannan VM, Saritha VN et al (2021) Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic. Ecol Indic 126:107704. https://doi.org/10.1016/j.ecolind.2021.107704

    Article  CAS  Google Scholar 

  94. Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57(4):303–315. https://doi.org/10.1139/w11-004

    Article  CAS  PubMed  Google Scholar 

  95. Rigét F, Bignert A, Braune B et al (2010) Temporal trends of legacy POPs in Arctic biota, an update. Sci Total Environ 408(15):2874–2884. https://doi.org/10.1016/j.scitotenv.2009.07.036

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Rawat SR, Männistö MK, Bromberg Y, Häggblom MM (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82(2):341–355. https://doi.org/10.1111/j.1574-6941.2012.01381.x

    Article  CAS  PubMed  Google Scholar 

  97. Männistö MK, Kurhela E, Tiirola M, Häggblom MM (2013) Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiol Ecol 84(1):47–59. https://doi.org/10.1111/1574-6941.12035

    Article  CAS  PubMed  Google Scholar 

  98. Freitas S, Hatosy S, Fuhrman JA et al (2012) Global distribution and diversity of marine Verrucomicrobia. ISME J 6(8):1499–1505. https://doi.org/10.1038/ismej.2012.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cardman Z, Arnosti C, Durbin A et al (2014) Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl Environ Microbiol 80(12):3749–3756. https://doi.org/10.1128/AEM.00899-14

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jain A, Krishnan KP, Singh A et al (2019) Biochemical composition of particles shape particle-attached bacterial community structure in a high Arctic fjord. Ecol Indic 102:581–592. https://doi.org/10.1016/j.ecolind.2019.03.015

    Article  CAS  Google Scholar 

  101. Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_12

    Chapter  Google Scholar 

  102. Stewart KJ, Coxson D, Grogan P (2011) Nitrogen inputs by associative Cyanobacteria across a low Arctic tundra landscape. Arct Antarct Alp Res 43(2):267–278. https://doi.org/10.1657/1938-4246-43.2.267

    Article  ADS  Google Scholar 

  103. Gray ND, McCann CM, Christgen B et al (2014) Soil geochemistry confines microbial abundances across an arctic landscape; implications for net carbon exchange with the atmosphere. Biogeochemistry 120:307–317. https://doi.org/10.1007/s10533-014-9997-7

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to ESSO-NCPOR, Goa, for providing logistic support for sediment sampling. The authors are grateful to Macrogen Inc., Republic of Korea, for performing 16s rRNA based metabarcoding of DNA samples. BK is thankful to Department of Science and Technology (DST), Government of India, for the award of PURSE fellowship. BK and SS acknowledge the support of Mr. Ajithabh K. S. for plotting the map with sampling sites. The authors are grateful to Department of Marine Biology, Microbiology and Biochemistry and National Centre for Aquatic Animal Health (NCAAH), Cochin University of Science and Technology, for providing necessary facilities to perform the work.

Author information

Authors and Affiliations

Authors

Contributions

JP, JC, JT and RP collected the sediment samples. BK carried out the experiment of the present work with support from SS and JG. MS and ASM assisted the processing of sediment samples. The work was carried out under the supervision of RP. BK wrote the manuscript. SS, RP, JP, CER, JG and MS reviewed and edited the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Rosamma Philip.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luiz Henrique Rosa

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 665 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachiprath, B., Solomon, S., Gopi, J. et al. Exploring bacterial diversity in Arctic fjord sediments: a 16S rRNA–based metabarcoding portrait. Braz J Microbiol 55, 499–513 (2024). https://doi.org/10.1007/s42770-023-01217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01217-6

Keywords

Navigation