Skip to main content
Log in

Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mercury is a non-essential and toxic metal that induces toxicity in most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to metal contaminants and other environmental stressors. The present study demonstrated the potential of mercury-resistant endophytic fungi in phytoremediation. We examined the functional traits involved in plant growth promotion, phytotoxicity mitigation, and mercury phytoremediation in seven fungi strains. The endophytic isolates synthesized the phytohormone indole-3-acetic acid, secreted siderophores, and solubilized phosphate in vitro. Inoculation of maize (Zea mays) plants with endophytes increased plant growth attributes by up to 76.25%. The endophytic fungi stimulated mercury uptake from the substrate and promoted its accumulation in plant tissues (t test, p < 0.05), preferentially in the roots, which thereby mitigated the impacts of metal phytotoxicity. Westerdykella aquatica P71 and the newly identified species Pseudomonodictys pantanalensis nov. A73 were the isolates that presented the best phytoremediation potential. Assembling and annotation of P. pantanalensis A73 and W. aquatica P71 genomes resulted in genome sizes of 45.7 and 31.8 Mb that encoded 17,774 and 11,240 protein-coding genes, respectively. Some clusters of genes detected were involved in the synthesis of secondary metabolites such as dimethylcoprogen (NRPS) and melanin (T1PKS), which are metal chelators with antioxidant activity; mercury resistance (merA and merR1); oxidative stress (PRX1 and TRX1); and plant growth promotion (trpS and iscU). Therefore, both fungi species are potential tools for the bioremediation of mercury-contaminated soils due to their ability to reduce phytotoxicity and assist phytoremediation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are available in the article and deposited in the NCBI database.

References

  1. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127:58–63. https://doi.org/10.1016/j.chemosphere.2014.12.073

    Article  CAS  PubMed  Google Scholar 

  2. Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47(2):116–140. https://doi.org/10.1007/s13280-017-1004-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, Rinklebe J (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ Int 126:747–761. https://doi.org/10.1016/j.envint.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  4. Li F, Zhang J, Jiang W, Liu C, Zhang Z, Zhang C, Zeng G (2017) Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ Geochem Health 39(4):923–934. https://doi.org/10.1007/s10653-016-9864-7

    Article  CAS  PubMed  Google Scholar 

  5. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  6. Ermolin MS, Fedotov PS, Malik NA, Karandashev VK (2018) Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 200:16–22. https://doi.org/10.1016/j.chemosphere.2018.02.089

    Article  CAS  PubMed  Google Scholar 

  7. Samal AC, Chakraborty S, Mallick A, Santra SC (2017) Mercury contamination in urban ecosystem–a case study in and around Kolkata metropolis, West Bengal. India Int J Exp Res Rev 13:38–43

    Google Scholar 

  8. Castro MS, Hilderbrand RH, Kaumeyer M (2018) Mercury concentrations in northern two-lined salamanders from stream ecosystems in Garrett County, Maryland. Arch Environ Contam Toxicol 75(1):17–24. https://doi.org/10.1007/s00244-017-0496-4

    Article  CAS  PubMed  Google Scholar 

  9. Schudel G, Miserendino RA, Veiga MM, Velasquez-López PC, Lees PS, Winland-Gaetz S, Bergquist BA (2018) An investigation of mercury sources in the Puyango-Tumbes River: using stable Hg isotopes to characterize transboundary Hg pollution. Chemosphere 202:777–787. https://doi.org/10.1016/j.chemosphere.2018.03.081

    Article  CAS  PubMed  Google Scholar 

  10. Tang Z, Fan F, Deng S, Wang D (2020) Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury-a critical review. Ecotoxicol Environ Safety 202:110950. https://doi.org/10.1016/j.ecoenv.2020.110950

    Article  CAS  PubMed  Google Scholar 

  11. Ceccatto AP, Testoni MC, Ignácio AR, Santos-Filho M, Malm O, Díez S (2016) Mercury distribution in organs of fish species and the associated risk in traditional subsistence villagers of the Pantanal wetland. Environ Geochem Health 38(3):713–722. https://doi.org/10.1007/s10653-015-9754-4

    Article  CAS  PubMed  Google Scholar 

  12. Pestana IA, de Rezende CE, Almeida R, de Lacerda LD, Bastos WR (2022) Let’s talk about mercury contamination in the Amazon (again): the case of the floating gold miners’ village on the Madeira River. Ext Ind Soc 11:101122. https://doi.org/10.1016/j.exis.2022.101122

    Article  Google Scholar 

  13. Wang X, He Z, Luo H, Zhang M, Zhang D, Pan X, Gadd GM (2018) Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci Total Environ 615:615–623. https://doi.org/10.1016/j.scitotenv.2017.09.336

    Article  CAS  PubMed  Google Scholar 

  14. Frossard A, Donhauser J, Mestrot A, Gygax S, Bååth E, Frey B (2018) Long-and short-term effects of mercury pollution on the soil microbiome. Soil Biol Biochem 120:191–199. https://doi.org/10.1016/j.soilbio.2018.01.028

    Article  CAS  Google Scholar 

  15. Feng X, Meng B, Yan H, Fu X, Yao H, Shang L (2018) Bioaccumulation of mercury in aquatic food chains. In: Biogeochemical cycle of mercury in reservoir systems in Wujiang River Basin, Southwest China. Springer, Singapore, pp 339–389. https://doi.org/10.1007/978-981-10-6719-8

  16. Luo H, Wang Q, Liu Z, Wang S, Long A, Yang Y (2020) Potential bioremediation effects of seaweed Gracilaria lemaneiformis on heavy metals in coastal sediment from a typical mariculture zone. Chemosphere 245:125636. https://doi.org/10.1016/j.chemosphere.2019.125636

    Article  CAS  PubMed  Google Scholar 

  17. Skaldina O, Sorvari J (2019) Ecotoxicological effects of heavy metal pollution on economically important terrestrial insects. In Networking of mutagens in environmental toxicology 137–144. Springer, Cham https://doi.org/10.1007/978-3-319-96511-6_7

  18. Khan F, Momtaz S, Abdollahi M (2019) The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol 52:37–47. https://doi.org/10.1016/j.jtemb.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. In: Reviews of environmental contamination and toxicology. Springer, pp 1–18. https://doi.org/10.1007/978-3-319-03777-6_1

  20. Han B, Lv Z, Han X, Li S, Han B, Yang Q, Zhang Z (2022) Harmful effects of inorganic mercury exposure on kidney cells: mitochondrial dynamics disorder and excessive oxidative stress. Biol Trace Elem Res 200(4):1591–1597. https://doi.org/10.1007/s12011-021-02766-3

    Article  CAS  PubMed  Google Scholar 

  21. Hu XF, Lowe M, Chan HM (2021) Mercury exposure, cardiovascular disease, and mortality: a systematic review and dose-response meta-analysis. Environ Res 193:110538. https://doi.org/10.1016/j.envres.2020.110538

    Article  CAS  PubMed  Google Scholar 

  22. Mariano C, Mello IS, Barros BM, da Silva GF, Terezo AJ, Soares MA (2020) Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. Environ Sci Pollut Res 27(12):13550–13564. https://doi.org/10.1007/s11356-020-07913-2

    Article  CAS  Google Scholar 

  23. Wang L, Wang LA, Zhan X, Huang Y, Wang J, Wang X (2020) Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils. Ecotoxicol Environ Safety 188:109906. https://doi.org/10.1016/j.ecoenv.2019.109906

    Article  CAS  PubMed  Google Scholar 

  24. da Silva Maciel JH, Mello IS, Vendrusculo SJ, Senabio JA, da Silva RC, de Siqueira AB, Soares MA (2021) Endophytic and rhizospheric bacterial communities are affected differently by the host plant species and environmental contamination. Symbiosis 85:191–206. https://doi.org/10.1007/s13199-021-00804-1

  25. Mello IS, Pietro-Souza W, Barros BM, da Silva GF, Campos ML, Soares MA (2019) Endophytic bacteria mitigate mercury toxicity to host plants. Symbiosis 79(3):251–262. https://doi.org/10.1007/s13199-019-00644-0

    Article  CAS  Google Scholar 

  26. Pietro-Souza W, Mello IS, Vendruscullo SJ, da Silva GF, da Cunha CN, White JF, Soares MA (2017) Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PloS one 12(7):e0182017. https://doi.org/10.1371/journal.pone.0182017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pietro-Souza W, de Campos Pereira F, Mello IS, Stachack FFF, Terezo AJ, da Cunha CN, Soares MA (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874. https://doi.org/10.1016/j.chemosphere.2019.124874

    Article  CAS  PubMed  Google Scholar 

  28. Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EA (2018) Fungal endophyte Alternaria tenuissima can affect growth and selenium accumulation in its hyperaccumulator host Astragalus bisulcatus. Front Plant Sci 9:1213. https://doi.org/10.3389/fpls.2018.01213

  29. Ullah R, Muhammad S (2020) Heavy metals contamination in soils and plants along with the mafic-ultramafic complex (Ophiolites), Baluchistan, Pakistan: evaluation for risk and phytoremediation potential. Environ Technol Innov 100931 https://doi.org/10.1016/j.eti.2020.100931

  30. Chang J, Shi Y, Si G, Yang Q, Dong J, Chen J (2020) The bioremediation potentials and mercury (II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil. J Hazard Mater 122638 1016/j.jhazmat.2020.122638

  31. Mello IS, Targanski S, Pietro-Souza W, Stachack FFF, Terezo AJ, Soares MA (2020) Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol Environ Safety 202:110818. https://doi.org/10.1016/j.ecoenv.2020.110818

    Article  CAS  PubMed  Google Scholar 

  32. Norambuena J, Miller M, Boyd JM, Barkay T (2020) Expression and regulation of the mer operon in Thermus thermophilus. Environ Microbiol 22(4):1619–1634. https://doi.org/10.1111/1462-2920.14953

    Article  CAS  PubMed  Google Scholar 

  33. Chen SH, Cheow YL, Ng SL, Ting ASY (2019) Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J Hazard Mater 362:394–402. https://doi.org/10.1016/j.jhazmat.2018.08.077

    Article  CAS  PubMed  Google Scholar 

  34. Hoque E, Fritscher J (2019) Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis. Sci Rep 9(1):1–16. https://doi.org/10.1038/s41598-019-46560-7

    Article  CAS  Google Scholar 

  35. Stein HP, Navajas-Pérez R, Aranda E (2018) Potential for CRISPR genetic engineering to increase xenobiotic degradation capacities in model fungi. In Approaches in bioremediation 61–78. Springer, Cham https://doi.org/10.1007/978-3-030-02369-0_4

  36. Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage 132:129–134. https://doi.org/10.1016/j.jenvman.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  37. Arora NK, Verma M (2017) Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7(6):381. https://doi.org/10.1007/s13205-017-1008-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giovanella P, Cabral L, Costa AP, de Oliveira Camargo FA, Gianello C, Bento FM (2017) Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol Environ Saf 140:162–169. https://doi.org/10.1016/j.ecoenv.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  39. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  CAS  PubMed  Google Scholar 

  40. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit)

  41. Almoneafy AA, Kakar KU, Nawaz Z, Li B, Saand MA, Chunlan Y, Xie GL (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70. https://doi.org/10.1007/s13199-014-0288-9

    Article  CAS  Google Scholar 

  42. Arnone III JA, Gordon JC (1990). Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytologist 116(1):55–66. https://doi.org/10.1111/j.1469-8137.1990.tb00510.x

    Article  CAS  Google Scholar 

  43. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  44. Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S, Hothorn MT (2016) Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria. L https://multcomp.R-forge.R-project.org

  45. Khan AR, Ullah I, Waqas M, Park GS, Khan AL, Hong SJ, Lee IJ (2017) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136:180–188. https://doi.org/10.1016/j.ecoenv.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  46. Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  47. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. In: Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 29 Sept 2019

  48. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A (2020) Using SPAdes de novo assembler. Curr Protocol Bioinforma 70(1):e102. https://doi.org/10.1002/cpbi.102

    Article  CAS  Google Scholar 

  49. Forth LF, Höper D, Beer M, Eschbaumer M (2020) High-resolution composition analysis of an inactivated polyvalent foot-and-mouth disease vaccine. Pathogens 9(1):63. https://doi.org/10.3390/pathogens9010063

  50. Scholz M, Lo CC, Chain PS (2014) Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of contigs. Sci Rep 4:6480. https://doi.org/10.1038/srep06480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32(suppl 2):W309–W312. https://doi.org/10.1093/nar/gkh379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. https://doi.org/10.1093/bioinformatics/btv351

    Article  CAS  PubMed  Google Scholar 

  55. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by uclea-mapper. Mol Biol Evol 34(8):2115–2122. https://doi.org/10.1093/molbev/msx148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44(D1):D286–D193. https://doi.org/10.1093/nar/gkv1248

    Article  CAS  PubMed  Google Scholar 

  57. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, Pesseat S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. https://doi.org/10.1093/bioinformatics/btu031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lagesen K, Hallin PF, Rødland E, Stærfeldt HH, Rognes T, Ussery DW (2007) RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai LR, Kumar R, Ozkan S, Wang H, Manda P, Arick T, Bridges SM, Burgess SC (2010) "AgBase: supporting functional modeling in agricultural organisms." Nucleic Acids Res 2011 39(Database issue):D497–506

  61. Okonechnikov K, Golosova O, Fursov M, Ugene Team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  Google Scholar 

  62. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mole Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  63. Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  64. Rambaut A (2009) FigTree v1.3.1 http://tree.bio.ed.ac.uk/software/figtree

  65. Pimentel IC, Figura G, Auer CG (2010) Fungos endofíticos associados a acículas de Pinus taeda. Summa phytopathologica 36:85–88. https://doi.org/10.1590/S0100-54052010000100016

    Article  Google Scholar 

  66. Kern ME, Blevins KS (1999) Medical mycology - text and atlas, 2nd edn. São Paulo

  67. Tanaka K, Harada Y (2003) Pleosporales in Japan (3) The genus Massarina. Mycoscience 44(3):173–185. https://doi.org/10.1007/S10267-003-0102-7

    Article  Google Scholar 

  68. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  69. Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Amer Newsl 34:59

  70. Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D (2016) Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol 92(10):fiw144. https://doi.org/10.1093/femsec/fiw144

  71. Contreras-Maizeejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53. https://doi.org/10.1016/j.apsoil.2017.10.004

    Article  Google Scholar 

  72. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127. https://doi.org/10.1007/s13199-018-0545-4

    Article  CAS  Google Scholar 

  73. Numponsak T, Kumla J, Suwannarach N, Matsui K, Lumyong S (2018) Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PloS one 13(10):e0205070. https://doi.org/10.1371/journal.pone.0205070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adhikari P, Pandey A (2019) Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. Roots Rhizosphere 9:2–9. https://doi.org/10.1016/j.rhisph.2018.11.002

    Article  Google Scholar 

  75. Jahn L, Hofmann U, Ludwig-Müller J (2021) Indole-3-acetic acid is synthesized by the endophyte Cyanodermella asteris via a tryptophan-dependent and-independent way and mediates the interaction with a non-host plant. Int J Mol Sci 22(5):2651. https://doi.org/10.3390/ijms22052651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77(3):225–235. https://doi.org/10.1007/s13199-018-0583-y

    Article  CAS  Google Scholar 

  77. He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC (2020) Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol 40(1):31–45. https://doi.org/10.1080/07388551.2019.1675582

    Article  CAS  PubMed  Google Scholar 

  78. Forester NT, Lane GA, Steringa M, Lamont IL, Johnson LJ (2018) Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloë festucae. Fungal Genet Biol 111:60–72. https://doi.org/10.1016/j.fgb.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  79. Al Shaer D, Al Musaimi O, Beatriz G, Albericio F (2020) Hydroxamate siderophores: natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Euro J Med Chem 112791 https://doi.org/10.1016/j.ejmech.2020.112791

  80. Della Mónica IF, Godoy MS, Godeas AM, Scervino JM (2018) Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. J Appl Microbiol 124(1):155–165. https://doi.org/10.1111/jam.13620

    Article  CAS  PubMed  Google Scholar 

  81. Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20. https://doi.org/10.1016/j.ecoenv.2018.03.063

    Article  CAS  PubMed  Google Scholar 

  82. Shafiq S, Adeel M, Raza H, Iqbal R, Ahmad Z, Naeem M, Azmi UR (2019) Effects of foliar application of selenium in maize (Zea Mays L.) under cadmium toxicity. In Biol Forum-An Int J 11(2):27–37

    Google Scholar 

  83. Gopi K, Jinal HN, Prittesh P, Kartik VP, Amaresan N (2020) Effect of copper-resistant Stenotrophomonas maltophilia on maize (Zea mays) growth, physiological properties, and copper accumulation: potential for phytoremediation into biofortification. Int J Phytorem 22(6):662–668. https://doi.org/10.1080/15226514.2019.1707161

    Article  CAS  Google Scholar 

  84. Soares MA, Li HY, Bergen M, Da Silva JM, Kowalski KP, White JF (2016) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.). Plant Soil 405(1):107–123. https://doi.org/10.1007/s11104-015-2638-7

    Article  CAS  Google Scholar 

  85. Liotti RG, da Silva Figueiredo MI, Soares MA (2019) Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biol Control 138:104065. https://doi.org/10.1016/j.biocontrol.2019.104065

    Article  CAS  Google Scholar 

  86. Soares MA, Li HY, Kowalski KP, Bergen M, Torres MS, White JF (2016) Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol Invasions 18(9):2689–2702. https://doi.org/10.1007/s10530-016-1160-z

    Article  Google Scholar 

  87. Shahabivand S, Parvaneh A, Aliloo AA (2020) Different response of Alyssum montanum and Helianthus annuus to cadmium bioaccumulation mediated by the endophyte fungus Serendipita indica. Acta Ecol Sin 40(4):315–322. https://doi.org/10.1016/j.chnaes.2019.09.002

    Article  Google Scholar 

  88. Sharma VK, Li XY, Wu GL, Bai WX, Parmar S, White JF Jr, Li HY (2019) Endophytic community of Pb-Zn hyperaccumulator Arabis alpina and its role in host plants metal tolerance. Plant Soil 437(1):397–411. https://doi.org/10.1007/s11104-019-03988-0

    Article  CAS  Google Scholar 

  89. de Siqueira KA, Senabio JA, Pietro-Souza W, de Oliveira Mendes TA, Soares MA (2021) Aspergillus sp A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol 203(9):5345–5361. https://doi.org/10.1007/s00203-021-02481-6

    Article  CAS  PubMed  Google Scholar 

  90. Baroncelli R, Da Lio D, Vannacci G, Sarrocco S (2020) Genome resources for the endophytic fungus Paraphaeosphaeria sporulosa. Mol Plant Microbe Interact 33(9):1098–1099. https://doi.org/10.1094/MPMI-04-20-0097-A

    Article  CAS  PubMed  Google Scholar 

  91. Dal’Sasso TCDS, Rody HVS, Grijalba PE, de Oliveira LO (2021) Genome sequences and in silico effector mining of Corynespora cassiicola CC_29 and Corynespora olivacea CBS 114450. Arch Microbiol 20(8):5257–5265. https://doi.org/10.1007/s00203-021-02456-7

  92. Chi BB, Lu YN, Yin PC, Liu HY, Chen HY, Shan Y (2021) Sequencing and comparative genomic analysis of a highly metal-tolerant Penicillium janthinellum P1 provide insights into its metal tolerance. Front Microbiol 12:1475. https://doi.org/10.3389/fmicb.2021.663217

    Article  Google Scholar 

  93. Tran-Ly AN, Reyes C, Schwarze FW, Ribera J (2020) Microbial production of melanin and its various applications. World J Microbiol Biotechnol 36(11):1–9. https://doi.org/10.1007/s11274-020-02941-z

    Article  CAS  Google Scholar 

  94. Chung KR, Wu PC, Chen YK, Yago JI (2020) The siderophore repressor SreA maintains growth, hydrogen peroxide resistance, and cell wall integrity in the phytopathogenic fungus Alternaria alternata. Fungal Genet Biol 139:103384. https://doi.org/10.1016/j.fgb.2020.103384

    Article  CAS  PubMed  Google Scholar 

  95. Phale PS, Sharma A, Gautam K (2019) Microbial degradation of xenobiotics like aromatic pollutants from the terrestrial environments. In: Pharmaceuticals and personal care products: waste management and treatment technology. Butterworth-Heinemann, pp 259–278. https://doi.org/10.1016/B978-0-12-816189-0.00011-1

  96. Leontovyčová H, Trdá L, Dobrev PI, Šašek V, Gay E, Balesdent MH, Burketová L (2020) Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Res Microbiol. https://doi.org/10.1016/j.resmic.2020.05.001

    Article  PubMed  Google Scholar 

  97. Huang C, Lai C, Xu P, Zeng G, Huang D, Zhang J, Wang R (2017) Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Chemosphere 187:70–77. https://doi.org/10.1016/j.chemosphere.2017.08.104

    Article  CAS  PubMed  Google Scholar 

  98. Kumar V, Dwivedi SK (2020) Multimetal tolerant fungus Aspergillus flavus CR500 with remarkable stress response, simultaneous multiple metal/loid removal ability and bioremediation potential of wastewater. Environ Technol Innov 20:101075. https://doi.org/10.1016/j.eti.2020.101075

    Article  CAS  Google Scholar 

  99. Asemoloye MD, Ahmad R, Jonathan SG (2018) Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ Pollut 235:55–64. https://doi.org/10.1016/j.envpol.2017.12.042

    Article  CAS  PubMed  Google Scholar 

  100. Cheng YT, Zhang L, He SY (2019) Plant-microbe interactions facing environmental challenge. Cell Host Microbe 26(2):183–192. https://doi.org/10.1016/j.chom.2019.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yun BR, Malik A, Kim SB (2020) Genome based characterization of Kitasatospora sp MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene 733:144379. https://doi.org/10.1016/j.gene.2020.144379

    Article  CAS  PubMed  Google Scholar 

  102. Ravintheran SK, Sivaprakasam S, Loke S, Lee SY, Manickam R, Yahya A, Rajandas H (2019) Complete genome sequence of Sphingomonas paucimobilis AIMST S2, a xenobiotic-degrading bacterium. Scientific Data 6(1):1–6. https://doi.org/10.1038/s41597-019-0289-x

    Article  Google Scholar 

  103. Goutam J, Sharma J, Singh R, Sharma D (2021) Fungal-mediated bioremediation of heavy metal–polluted environment. In: Microbial rejuvenation of polluted environment. Springer, pp 51–76. https://doi.org/10.1007/978-981-15-7455-9_3

  104. Villar E, Cabrol L, Heimbürger-Boavida LE (2020) Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep 12(3):277–287. https://doi.org/10.1111/1758-2229.12829

    Article  CAS  PubMed  Google Scholar 

  105. Wei Q, Yan J, Chen Y, Zhang L, Wu X, Shang S, Zhang H (2018) Cell surface display of MerR on Saccharomyces cerevisiae for biosorption of mercury. Mol Biotechnol 60(1):12–20. https://doi.org/10.1007/s12033-017-0039-2

    Article  CAS  PubMed  Google Scholar 

  106. Chadha S, Mehetre ST, Bansal R, Kuo A, Aerts A, Grigoriev IV, Mukherjee PK (2018) Genome-wide analysis of cytochrome P450s of Trichoderma spp: annotation and evolutionary relationships. Fungal Biol Biotechnol 5(1):12. https://doi.org/10.1186/s40694-018-0056-3

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shen M, Zhao DK, Qiao Q, Liu L, Wang JL, Cao GH, Zhao ZW (2015) Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PloS one 10(4):e0123418. https://doi.org/10.1371/journal.pone.0123418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Song HY, El Sheikha AF, Zhong PA, Liao JL, Wang ZH, Huang YJ, Hu DM (2020) Westerdykella aquatica sp. nov., producing phytase. Mycotaxon 135(2):281–292. https://doi.org/10.5248/135.281

    Article  Google Scholar 

  109. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KT, Dai DQ, Spirin V (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal diversity 75(1):27–274. https://doi.org/10.1007/s13225-015-0346-5

    Article  Google Scholar 

  110. Phukhamsakda C, Bhat DJ, Hongsanan S, Xu JC, Stadler M, Hyde KD (2018) Two novel species of Neoaquastroma (Parabambusicolaceae, Pleosporales) with their phoma-like asexual morphs. MycoKeys 34:47. https://doi.org/10.3897/mycokeys.34.25124

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from National Council for Scientific and Technological Development (CNPq, grant # 409062/2018–9), The Mato Grosso State Research Foundation (FAPEMAT, grant # 568258/2014), and Coordination for the Improvement of Higher Education Personnel (CAPES)—Financial Code 001.

Author information

Authors and Affiliations

Authors

Contributions

J.A.S. designed and conducted the research and analyzed the data. J.A.S, F.C.P. and W.P.S. conducted the experiments and collected the data. M.A.S. designed the research, analyzed the data, contributed with tools and reagents, and reviewed the final version. J.A.S. wrote the manuscript. T.F.S. and G.F.S. analyzed the phylogeny.

Corresponding author

Correspondence to Marcos Antônio Soares.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Admir Giachini

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3972 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senabio, J.A., de Campos Pereira, F., Pietro-Souza, W. et al. Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz J Microbiol 54, 949–964 (2023). https://doi.org/10.1007/s42770-023-00924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00924-4

Keywords

Navigation