Skip to main content
Log in

Characterization of lactic acid bacteria isolated from the poultry intestinal environment with anti-Salmonella activity in vitro

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this research was the genotypic identification of lactic acid bacteria (LAB), isolated from the gastrointestinal tract (GIT) of healthy adult birds, and the study of their safety regarding antibiotic resistance, physiological and functional properties involved in the colonization of the GIT of poultry, and Salmonella exclusion, as members of a potential mixed probiotic supplement for poultry. The nucleotidic sequence from Lactobacillus crispatus P1, L. animalis L3, and Enterococcus faecium CRL 1385 (ex-J96) showed 100, 99.8, and 99.3% identity with L. crispatus DSM 20584 T, Ligilactobacillus salivarius ATCC 11741 T, and E. faecium ATCC 19434 T, respectively. These strains showed no resistance to relevant antibiotics usually administered to animals proposed by the European Food Safety Authority. They could endure the detrimental conditions of the gastrointestinal tract (pH 2.6 and oxgall 0.1 and 0.4% w/v). In an ex vivo assay, the LAB showed high adherence to the three sections of the GIT, reaching values higher than 70%. The adhesion to mucus was strain-dependent: L. crispatus CRL 1453 evidenced the highest adhesion (> 19%) while Lig. salivarius subsp. salivarius CRL 1417 and E. faecium CRL 1385 adhered to a lower extent (> 9 and 2%, respectively). Moreover, the LAB elicited remarkable anti-Salmonella activity, taking into account that they could inhibit elevated counts of different Salmonella serovars, especially the host-specific serovars S. Gallinarum and S. Pullorum (up to 8 log CFU/mL decrease in Salmonella counts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Unites States Department of Agriculture (USDA) (2022) Livestock and poultry: world markets and trade. https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf. Accessed 10 June 2022

  2. Estevez I (2007) Density allowances for broilers: where to set the limits? Poult Sci. https://doi.org/10.1093/ps/86.6.1265

    Article  PubMed  Google Scholar 

  3. OIE (2021) Manual of standard diagnostic tests and vaccines, Part 2 Section 2.9 chapter 2.9.9. http://www.oie.int/fileadmin/Home/esp/Health_standards/tahm/2.09.09.%20Salmonelosis.pdf. Accessed 7 August 2021

  4. Jajere SM (2019) A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World. https://doi.org/10.14202/vetworld.2019.504-521

  5. Souza MN, Lehmann FKM, De Carli S, Kipper D, Fonseca ASK, Ikuta N, Lunge VR (2019) Molecular detection of Salmonella serovars Enteritidis, Heidelberg and Typhimurium directly from pre-enriched poultry samples. Brit Poult Sci. https://doi.org/10.1080/00071668.2019.1614525

  6. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00057

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TT, Sukumaran AT (2020) Avian pathogenic Escherichia coli and Clostridium perfringens: challenges in no antibiotic ever broiler production and potential solutions. Microorganisms. https://doi.org/10.3390/microorganisms8101533

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  9. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, Ouwehand AC (2020) Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01662

    Article  PubMed  PubMed Central  Google Scholar 

  10. Argañaraz-Martínez E, Babot JD, Apella MC, Perez Chaia A (2013) Physiological and functional characteristics of Propionibacterium strains of the poultry microbiota and relevance for the development of probiotic products. Anaerobe. https://doi.org/10.1016/j.anaerobe.2013.08.001

    Article  PubMed  Google Scholar 

  11. Bajagai YS, Klieve AV, Dart PJ, Bryden WL (2016) Probiotics in animal nutrition-production, impact and regulation. FAO Animal Production and Health Paper No. 179. Harinder, P.S. (ed). FAO, Rome, Italy. https://www.fao.org/3/i5933e/i5933e.pdf

  12. Audisio MC (1999) Estudio de bacterias lácticas con actividad antipatógena para el diseño de suplementos probióticos para aves. (PhD Thesis). Facultad de Ingeniería. Universidad Nacional de Salta. Salta, Argentina

  13. Audisio MC, Oliver G, Apella MC (1999) Antagonistic effect of Ent. faecium J96 against human and poultry pathogenic salmonellae species. J Food Prot. https://doi.org/10.4315/0362-028X-62.7.751

  14. Audisio MC, Oliver G, Apella MC (2000) Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella Pullorum. J Food Prot. https://doi.org/10.4315/0362-028x-63.10.1333

    Article  Google Scholar 

  15. Gusils C, Perez Chaia A, González S, Oliver G (1999) Lactobacilli isolated from chicken intestines: potential use as probiotics. J Food Prot. https://doi.org/10.4315/0362-028X-62.3.252

    Article  PubMed  Google Scholar 

  16. Babot JD, Argañaraz-Martínez E, Saavedra L, Apella MC, Perez Chaia A (2014) Selection of indigenous lactic acid bacteria to reinforce the intestinal microbiota of newly hatched chicken–relevance of in vitro and ex vivo methods for strains characterization. Res Vet Sci. https://doi.org/10.1016/j.rvsc.2014.06.001

    Article  PubMed  Google Scholar 

  17. Patel JB, Cockerill FR, Bradford PA (2015) Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement CLSI document M100–S25. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania

    Google Scholar 

  18. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot. https://doi.org/10.4315/0362-028X-61.12.1636

    Article  PubMed  Google Scholar 

  19. Jehl F, Cattoen C (2016) Comité de l'antibiogramme de la société française de microbiologie. Recommandations 2016. V1.0 Février, 117

  20. Gusils C (2000) Cepas probióticas de pollo: su adhesión a epitelios huésped específico. (PhD Thesis). Facultad de Buiquímica, Química y Farmacia. Universidad Nacional de Tucumán. Tucumán, Argentina

  21. Nachtigall C, Weber C, Rothenburger S, Jaros D, Rohm H (2019) Test parameters and cell chain length of Streptococcus thermophilus affect the microbial adhesion to hydrocarbons assay: a methodical approach. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz150

    Article  PubMed  Google Scholar 

  22. Perpetuini G, Tittarelli F, Schirone M, Di Gianvito P, Corsetti A, Arfelli G, Suzzi G, Tofalo R (2018) Adhesion properties and surface hydrophobicity of Pichia manshurica strains isolated from organic wines. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2017.09.011

    Article  Google Scholar 

  23. Farid W, Masud T, Sohail A, Ahmad N, Naqvi SS, Khan S, Ali A, Khalifa SA, Hussain A, Ali S, Saghir M, Siddeeg A, Manzoor MF (2021) Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus acidophilus strains isolated from Indigenous Dahi. Nutr, Food Sci. https://doi.org/10.1002/fsn3.2468

    Book  Google Scholar 

  24. Gusils C, Cuozzo S, Sesma F, González S (2002) Examination of adhesive determinants in three species of Lactobacillus isolated from chicken. Can J Microbiol. https://doi.org/10.1139/w01-122

    Article  PubMed  Google Scholar 

  25. Collado MC, Meriluoto J, Salminen S (2007) Measurement of aggregation properties between probiotics and pathogens: in vitro evaluation of different methods. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2007.07.005

    Article  PubMed  Google Scholar 

  26. Audisio MC, Terzolo HR, Apella MC (2005) Bacteriocin from honeybee beebread Enterococcus avium active against Listeria monocytogenes. Appl Environ Microbiol. https://doi.org/10.1128/AEM.71.6.3373-3375.2005

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jimenez-Trigos E, Toquet M, Barba M, Gómez-Martín Á, Quereda JJ, Bataller E (2022) Search of antimicrobial lactic acid bacteria from Salmonella-negative dogs. BMC Vet Res. https://doi.org/10.1186/s12917-021-03070-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gusils C, Ross R, Draksler D, Perez C, Tous M (2006) Inhibitory effects of chick Lactobacilli on enteropathogenic Salmonella. J Anim Vet Adv. https://doi=javaa.2006.126.131

  29. Ibarguren C (2010) Bacteriocinas sintetizadas por bacterias lácticas como potenciales bioprotectores de alimentos. (PhD Thesis). Facultad de Ingeniería. Universidad Nacional de Salta. Salta, Argentina

  30. Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Gropp J, Kolar B, Kouba M, López-Alonso M, López Puente S, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wallace RJ, Wester P, Glandorf B, Herman L, Kärenlampi S, Aguilera J, Anguita M, Brozzi R, Galobart J, EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2018) Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. https://doi.org/10.2903/j.efsa.2018.5206

  31. Anisimova EA, Yarullina DR (2019) Antibiotic resistance of Lactobacillus strains. Curr Microbiol. https://doi.org/10.1007/s00284-019-01769-7

    Article  PubMed  Google Scholar 

  32. Gueimonde M, Sánchez B, de Los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oruc O, Ceti̇n O, Darilmaz DO, Yüsekdag ZN, (2021) Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2021.111741

    Article  Google Scholar 

  34. Arias CA, Contreras GA, Murray BE (2010) Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2010.03214.x

    Article  PubMed  PubMed Central  Google Scholar 

  35. El-Zamkan MA, Mohamed HM (2021) Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis. PLoS ONE. https://doi.org/10.1371/journal.pone.0259584

    Article  PubMed  PubMed Central  Google Scholar 

  36. Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C (2000) Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.44.4.967-971.2000

    Article  PubMed  PubMed Central  Google Scholar 

  37. Enne VI, Delsol AA, Roe JM, Bennett PM (2004) Rifampicin resistance and its fitness cost in Enterococcus faecium. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkh044

    Article  PubMed  Google Scholar 

  38. Lynch C, Courvalin P, Nikaido H (1997) Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.41.4.869

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krawczyk B, Wityk P, Gałęcka M, Michalik M (2021) The many faces of Enterococcus spp—commensal, probiotic and opportunistic pathogen. Microorganisms. https://doi.org/10.3390/microorganisms9091900

  40. Kulkarni S, Haq SF, Samant S, Sukumaran S (2018) Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-017-9321-7

    Article  PubMed  Google Scholar 

  41. Garriga M, Pascual M, Monfort JM, Hugas M (1998) Selection of lactobacilli for chicken probiotic adjuncts. J Appl Microbiol. https://doi.org/10.1046/j.1365-2672.1997.00329.x

    Article  PubMed  Google Scholar 

  42. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Moller PL, Michaelsen KF, Parregaard A (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol. https://doi.org/10.1128/AEM.65.11.4949-4956.1999

  43. Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047

    Article  PubMed  Google Scholar 

  44. Rohith HS, Halami PM (2021) In vitro validation studies for adhesion factor and adhesion efficiency of probiotic Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 on HT-29 cell lines. Arch Microbiol. https://doi.org/10.1007/s00203-021-02257-y

    Article  PubMed  Google Scholar 

  45. Benavente Beltrán FJ, Morales Barrera L, González-González CR, Andrade Velasquez A, Melgar-Lalanne G (2021) Effect of simulated acidic and salty fermentation conditions on kinetic growth parameters and probiotic potential of Lactobacillus acidipiscis and Lactobacillus pentosus. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14871

    Article  Google Scholar 

  46. Arellano Ayala K, Ascencio Valle FJ, Gutiérrez González P, Estrada Girón Y, Torres Vitela MR, Macías Rodríguez ME (2020) Hydrophobic and adhesive patterns of lactic acid bacteria and their antagonism against foodborne pathogens on tomato surface (Solanum lycopersicum L.). J Appl Microbiol. https://doi.org/10.1111/jam.14672

    Article  PubMed  Google Scholar 

  47. Kumar R, Bansal P, Singh J, Dhanda S, Bhardwaj JK (2020) Aggregation, adhesion and efficacy studies of probiotic candidate Pediococcus acidilactici NCDC 252: a strain of dairy origin. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2785-8

    Article  PubMed  Google Scholar 

  48. Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, Yao M, Li L (2021) Probiotic gastrointestinal transit and colonization after oral administration: a long journey. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2021.609722

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rahman MM, Kim W-S, Kumura H, Shimazaki K (2008) Auto-aggregation and surface hydrophobicity of bifidobacteria. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-007-9650-x

    Article  Google Scholar 

  50. Tuo Y, Yu H, Ai L, Wu Z, Guo B, Chen W (2013) Aggregation and adhesion properties of 22 Lactobacillus strains. J Dairy Sci. https://doi.org/10.3168/jds.2013-6547

    Article  PubMed  Google Scholar 

  51. Ouwehand AC, Salminen SJ (2003) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb Ecol Health Dis. https://doi.org/10.1080/08910600310019886

    Article  Google Scholar 

  52. Muñoz-Provencio D, Llopis M, Antolín M, de Torres I, Guarner F, Pérez-Martínez G, Monedero V (2009) Adhesion properties of Lactobacillus casei strains to resected intestinal fragments and components of the extracellular matrix. Arch Microbiol. https://doi.org/10.1007/s00203-008-0436-9

    Article  PubMed  Google Scholar 

  53. Collado MC, Gueimonde M, Salminen SJ (2010) Probiotics in adhesion of pathogens: mechanisms of action. In: Watson, R.R., Preedy, V.R. (eds.) Bioactive foods in promoting health: probiotics and prebiotics. pp 353–370. Academic Press, Amsterdam. https://doi.org/10.1016/B978-0-12-374938-3.00023-2

  54. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol. https://doi.org/10.1016/S1521-6918(03)00052-0

    Article  PubMed  Google Scholar 

  55. Ma J, Rubin BK, Voynow JA (2018) Mucins, mucus, and goblet cells. Chest. https://doi.org/10.1016/j.chest.2017.11.008

    Article  PubMed  Google Scholar 

  56. Celebioglu HU, Svensson B (2018) Dietary nutrients, proteomes, and adhesion of probiotic lactobacilli to mucin and host epithelial cells. Microorganisms. https://doi.org/10.3390/microorganisms6030090

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mays ZJ, Chappell TC, Nair NU (2020) Quantifying and engineering mucus adhesion of probiotics. ACS Synth Biol. https://doi.org/10.1021/acssynbio.9b00356

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li XJ, Yue LY, Guan XF, Qiao SY (2008) The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol. https://doi.org/10.1111/j.1365-2672.2007.03636.x

    Article  PubMed  Google Scholar 

  59. Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiol. https://doi.org/10.1099/mic.0.043265-0

    Article  Google Scholar 

  60. Conway PL, Welin A, Cohen PS (1990) Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect Immun. https://doi.org/10.1128/iai.58.10.3178-3182.1990

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mantziari A, Mannila E, Collado MC, Salminen S, Gómez-Gallego C (2021) Exogenous polyamines influence in vitro microbial adhesion to human mucus according to the age of mucus donor. Microorganisms. https://doi.org/10.3390/microorganisms9061239

    Article  PubMed  PubMed Central  Google Scholar 

  62. Skrivanová E, Marounek M (2007) Influence of pH on antimicrobial activity of organic acids against rabbit enteropathogenic strain of Escherichia coli. Folia Microbiol. https://doi.org/10.1007/BF02932141

    Article  Google Scholar 

  63. Jawan R, Abbasiliasi S, Mustafa S, Kapri MR, Halim M, Ariff AB (2021) In vitro evaluation of potential probiotic strain Lactococcus lactis Gh1 and its bacteriocin-like inhibitory substances for potential use in the food industry. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-020-09690-3

    Article  PubMed  Google Scholar 

  64. Papagianni M, Avramidis N, Filioussis G, Dasiou D, Ambrosiadis I (2006) Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor «indicator microorganism». Microb Cell Factories. https://doi.org/10.1186/1475-2859-5-30

    Article  Google Scholar 

  65. Makras L, De Vuyst L (2006) The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J. https://doi.org/10.1016/j.idairyj.2005.09.006

    Article  Google Scholar 

  66. Foster JW, Hall HK (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol. https://doi.org/10.1128/jb.173.16.5129-5135.1991

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gao Z, Daliri EBM, Wang JUN, Liu D, Chen S, Ye X, Ding T (2019) Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J Food Prot. https://doi.org/10.4315/0362-028X.JFP-18-303

    Article  PubMed  Google Scholar 

  68. Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics, 2nd edn. John Wiley & Sons Inc, Hoboken, NJ

    Google Scholar 

  69. De Vuyst L, Makras L, Avonts L, Holo H, Yi Q, Servin A, Fayol-Messaoudi D, Berger C, Zoumpopoulou G, Tsakalidou E, Sgouras D, Martínez-Gonzales B, Panayotopoulou E, Mentis A, Smarandache D, Savu L, Thonart P, Nes I (2004) Antimicrobial potential of probiotic or potentially probiotic lactic acid bacteria, the first results of the international European research project PROPATH of the PROEUHEALTH cluster. Ecol Health Dis, Microb. https://doi.org/10.1080/08910600410032303

    Book  Google Scholar 

  70. Marianelli C, Cifani N, Pasquali P (2010) Evaluation of antimicrobial activity of probiotic bacteria against Salmonella enterica subsp. enterica serovar Typhimurium 1344 in a common medium under different environmental conditions. Res Microbiol. https://doi.org/10.1016/j.resmic.2010.06.007

Download references

Acknowledgements

We sincerely thank Lic. Mabel Taljuk for her assistance in the search of bibliography.

Funding

This research was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) [grant number PICT 2016 Nº 0528], Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [grants number PIP 678, P-UE 2017 N° 035], and Consejo de Investigaciones de la Universidad Nacional de Tucumán [grant number PIUNT D643/1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime Daniel Babot or María Cristina Apella.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, V.M., Babot, J.D., Fernández, M.M. et al. Characterization of lactic acid bacteria isolated from the poultry intestinal environment with anti-Salmonella activity in vitro. Braz J Microbiol 54, 435–447 (2023). https://doi.org/10.1007/s42770-022-00860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00860-9

Keywords

Navigation