Skip to main content
Log in

Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In the present study, the probiotic properties of 52 lactic acid bacteria strains, isolated from the intestinal mucosa of 60-day-old healthy piglets, were evaluated in vitro in order to acquire probiotics of potential application. Based on acidic and bile salt resistance, 11 lactic acid bacteria strains were selected, among which 1 was identified as Pediococcus acidilactici, 3 as Enterococcus faecium, 3 as Lactobacillus rhamnosus, 2 as Lactobacillus brevis, and 2 as Lactobacillus plantarum by 16S rRNA gene sequencing. All selected strains were further investigated for transit tolerance in simulated upper gastrointestinal tract, for adhesion capacity to swine intestinal epithelial cells J2 (IPEC-J2), for cell surface characteristics including hydrophobicity, co-aggregation and auto-aggregation, and for antimicrobial activities. Moreover, hemolytic, bile salt hydrolase and biogenic amine-producing abilities were investigated for safety assessment. Two E. faecium (WEI-9 and WEI-10) and one L. plantarum (WEI-51) exhibited good simulated upper gastrointestinal tract tolerance, and showed high auto-aggregation and co-aggregation with Escherichia coli 1570. The strains WEI-9 and WEI-10 demonstrated the highest adherence capacity. The 11 selected strains mentioned above exhibited strong antimicrobial activity against E. coli CVCC1570, Staphylococcus aureus CVCC1882 and Salmonella pullorum AS1.1859. None of the 11 selected strains, except WEI-9 and WEI-33, exhibited bile salt hydrolase, hemolytic or biogenic amine-producing abilities. This work showed that the E. faecium WEI-10 and L. plantarum WEI-51were found to have the probiotic properties required for use as potential probiotics in animal feed supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambadoyiannis G, Hatzikamari M, Litopoulou-Tzanetaki E, Tzanetakis N (2004) Probiotic and technological properties of enterococci isolates from infants and cheese. Food Biotechnol 18:307–325. doi:10.1081/lftb-200035024

    Article  CAS  Google Scholar 

  • Anandharaj M, Sivasankari B (2014) Isolation of potential probiotic Lactobacillus oris HMI68 from mother’s milk with cholesterol-reducing property. J Biosci Bioeng 118:153–159. doi:10.1016/j.jbiosc.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  • Anandharaj M, Sivasankari B, Santhanakaruppu R, Manimaran M, Rani RP, Sivakumar S (2015) Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Res Microbiol 166:428–439

    Article  CAS  PubMed  Google Scholar 

  • Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291

    Article  CAS  PubMed  Google Scholar 

  • Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41

    Article  CAS  PubMed  Google Scholar 

  • CLSI (2012) Perpormance Standards for Antimicrobial Susceptibility Test; Twenty-Second Informational Supplement. CLSI document M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  • Collado MC, Gueimonde M, Herna’ndez M, Sanz Y, Salminen S (2005) Adhesion of selected bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Protect 68:2672–2678

    Article  Google Scholar 

  • Coton M et al (2010) Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Crociani J, Grill JP, Huppert M, Ballongue J (1995) Adhesion of different bifidobacteria strains to human enterocyte‐like Caco‐2 cells and comparison with in vivo study. Lett Appl Microbiol 21:146–148

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012a) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740

    Article  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012b) Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA J 10:2682

    Article  Google Scholar 

  • Elkins CA, Mullis LB (2004) Bile-mediated aminoglycoside sensitivity in lactobacillus species likely results from increased membrane permeability attributable to cholic acid. Appl Environ Microbiol 70:7200–7209. doi:10.1128/aem.70.12.7200-7209.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Hongfei Z, Junyu Z, Dziugan P, Shanshan L, Bolin Z (2015) Evaluation of probiotic properties of Lactobacillus strains isolated from traditional Chinese cheese. Ann Microbiol 65:1419–1426. doi:10.1007/s13213-014-0980-2

    Article  CAS  Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotic in food. http://www.who.int/foodsafety/publications/fs_management/probiotic2/en/ pp 1–11

  • Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    Article  CAS  PubMed  Google Scholar 

  • Freitas AR, Tedim AP, Novais C, Ruiz-Garbajosa P, Werner G, Laverde-Gomez JA, Cantón R, Peixe L, Baquero F, Coque TM (2010) Global spread of the hylEfm colonization-virulence gene in megaplasmids of the Enterococcus faecium CC17 polyclonal subcluster. Antimicrob Agents Chemother 54:2660–2665. doi:10.1128/aac.00134-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987. doi:10.1046/j.1365-2672.2003.01915.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar D (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe 33:117–123

    Article  CAS  PubMed  Google Scholar 

  • Landeta G, de las Rivas B, Carrascosa AV, Muñoz R (2007) Screening of biogenic amine production by coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham processes. Meat Sci 77:556–561

    Article  CAS  PubMed  Google Scholar 

  • Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49:695–701

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yun HS, Cho KW, Oh S, Kim SH, Chun T, Kim B, Whang KY (2011) Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: immune modulation and longevity. Int J Food Microbiol 148:80–86

    Article  CAS  PubMed  Google Scholar 

  • Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88:55–66

    Article  CAS  PubMed  Google Scholar 

  • Macias-Rodriguez ME, Zagorec M, Ascencio F, Rojas M (2008) Potential probiotic Lactobacillus strains for piglets from an arid coast. Ann Microbiol 58:641–648

    Article  Google Scholar 

  • Manhar AK, Saikia D, Borah A, Das AS, Gupta K, Roy R, Mahanta CL, Mukhopadhyay R, Manda M (2016) Assessment of goat milk-derived potential probiotic L. lactis AMD17 and its application for preparation of dahi using honey. Ann Microbiol 66:1217–1228. doi:10.1007/s13213-016-1210-x

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  • Messaoudi S, Madi A, Prevost H, Feuilloley M, Manai M, Dousset X, Connil N (2012) In vitro evaluation of the probiotic potential of Lactobacillus salivarius SMXD51. Anaerobe 18:584–589

    Article  CAS  PubMed  Google Scholar 

  • Monteagudo-Mera A, Caro I, Rodríguez-Aparicio LB, Rúa J, Ferrero MA, García-Armesto MR (2011) Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products. J Food Protect 74:1379–1386. doi:10.4315/0362-028X.JFP-10-392

    Article  CAS  Google Scholar 

  • Moreno-Arribas MV, Polo MC, Jorganes F, Munoz R (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84:117–123

    Article  CAS  PubMed  Google Scholar 

  • Morrow LE, Gogineni V, Malesker MA (2012) Probiotics in the intensive care unit. Nutr Clin Pract 27:235–241

    Article  PubMed  Google Scholar 

  • Moser SA, Savage DC (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67:3476–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS (2012) Comparative genomics of Enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 3:e00318-11. doi:10.1128/mBio.00318-11

  • Pithva S, Shekh S, Dave J, Vyas BRM (2014) Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin. Appl Biochem Biotechnol 173:259–277

    Article  CAS  PubMed  Google Scholar 

  • Pitino L, Randazzo CL, Mandalari G, Lo Curto A, Faulks RM, Le Marc Y, Bisignano C, Caggia C, Wickham MSJ (2010) Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract. Food Microbiol 27:1121–1127

    Article  PubMed  Google Scholar 

  • Prasad J, Gill H, Smart J, Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993–1002

    Article  Google Scholar 

  • Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I, Nallapareddy SR, Huang W, Murray BE (2003) A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187:508–512. doi:10.1086/367711

    Article  CAS  PubMed  Google Scholar 

  • Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215. doi:10.1016/S0168-1656(00)00375-8

    Article  CAS  PubMed  Google Scholar 

  • Sarem F, SaremDamerdji LO, Nicolas JP (1996) Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett Appl Microbiol 22:439–442

    Article  CAS  PubMed  Google Scholar 

  • Shobharani P, Halami PM (2016) In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. Ann Microbiol 66:643–651. doi:10.1007/s13213-015-1146-6

    Article  CAS  Google Scholar 

  • Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S (2012) Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob Proteins 4:47–58

    Article  CAS  PubMed  Google Scholar 

  • Solieri L, Bianchi A, Mottolese G, Lemmetti F, Giudici P (2014) Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol 38:240–249

    Article  CAS  PubMed  Google Scholar 

  • Strompfova V, Laukova A (2009) Enterococci from piglets—probiotic properties and responsiveness to natural antibacterial substances. Folia Microbiol 54:538–544

    Article  CAS  Google Scholar 

  • Strompfova V, Laukova A (2014) Isolation and characterization of faecal bifidobacteria and lactobacilli isolated from dogs and primates. Anaerobe 29:108–112

    Article  CAS  PubMed  Google Scholar 

  • Top J, Sinnige JC, Majoor EAM, Bonten MJM, Willems RJL, van Schaik W (2011) The recombinase IntA is required for excision of esp-containing ICEEfm1 in Enterococcus faecium. J Bacteriol 193:1003–1006. doi:10.1128/jb.00952-10

    Article  CAS  PubMed  Google Scholar 

  • Toscano M, De Vecchi E, Gabrieli A, Zuccotti GV, Drago L (2015) Probiotic characteristics and in vitro compatibility of a combination of Bifidobacterium breve M-16 V, Bifidobacterium longum subsp. infantis M-63 and Bifidobacterium longum subsp. longum BB536. Ann Microbiol 65:1079–1086. doi:10.1007/s13213-014-0953-5

    Article  CAS  Google Scholar 

  • Tulini FL, Winkelströter LK, De Martinis ECP (2013) Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard artisanal cheese. Anaerobe 22:57–63

    Article  CAS  PubMed  Google Scholar 

  • Tulumoglu S, Yuksekdag ZN, Beyatli Y, Simsek O, Cinar B, Yasar E (2013) Probiotic properties of lactobacilli species isolated from children’s feces. Anaerobe 24:36–42

    Article  CAS  PubMed  Google Scholar 

  • Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond MB, Entenza JM, Moreillon P, Wind RD, Knol J, Wiertz E, Pot B, Vaughan EE, Kahlmeter G, Goossens H (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci Technol 19:102–114

    Article  CAS  Google Scholar 

  • Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W (2011) IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11:80. doi:10.1186/1471-2334-11-80

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Sun LB, Li CB, Li ZZ, Zhang Z, Wen XB, Hu Z, Zhang YL, Li SK (2014) Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain). Fish Shellfish Immunol 41:156–162

    Article  PubMed  Google Scholar 

  • Zuo F, Yu R, Feng X, Chen S (2016) Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. Ann Microbiol 66:1027–1037 doi:10.1007/s13213-015-1187-x

Download references

Acknowledgments

This study was funded by the Science and Technology Planning Project of Beijing Municipal Science and Technology Commission of China under Grant No. D161100006116001, and by the program for postdoctoral research in Zhongguancun Haidian Science Park of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Qiao, L., Liu, R. et al. Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Ann Microbiol 67, 239–253 (2017). https://doi.org/10.1007/s13213-017-1254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1254-6

Keywords

Navigation