Skip to main content
Log in

Fungal endophytes from leaves of Mandevilla catimbauensis (Apocynaceae): diversity and potential for L-asparaginase production

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this study, we examined endophytic fungi in leaves of Mandevilla catimbauensis, an endemic plant species found in the Brazilian dry forest (Caatinga), and endophytic fungi’s potential to produce L-asparaginase (L-ASNase). In total, 66 endophytes were isolated, and the leaf-fragment colonisation rate was 11.78%. Based on morphology, internal transcribed spacer (ITS), and partial large subunit (LSU) of ribosomal DNA sequencing, the endophytic fungi isolated belonged to six Ascomycota orders (Botryosphaeriales, Capnodiales, Diaporthales, Eurotiales, Marthamycetales, and Pleosporales). Phyllosticta species were the most frequent endophytes isolated (23 isolates [45.1%] from two species). The Shannon–Wiener and Fisher alpha index average values were 0.56 and 3.26, respectively. Twenty endophytes were randomly selected for the L-ASNase production test, of which fourteen isolates showed potential to produce the enzyme (0.48–2.22 U g−1), especially Phyllosticta catimbauensis URM 7672 (2.22 U g−1) and Cladosporium sp. G45 (2.11 U g−1). Phyllosticta catimbauensis URM 7672 was selected for the partial optimisation of L-ASNase production because of its ability to generate considerable amounts of enzyme. We obtained the highest L-ASNase activity (3.47 U g−1), representing an increase of 36.02% in enzymatic production, under the following experimental conditions: a pH of 4.2, 1.0% inoculum concentration, and 2.5% L-asparagine concentration. Our study showed that M. catimbauensis harbours an important diversity of endophytic fungi with biotechnological potential for L-ASNase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Plant specimen is deposited in the Herbário UFP – Geraldo Mariz and endophytic fungi cultures in the URM culture collection, both collections at the Universidade Federal de Pernambuco (Recife, Brazil). DNA sequences are deposited in the GenBank database and sequence alignment in TreeBASE.

Code availability

Not applicable.

References

  1. Strobel G, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268. https://doi.org/10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  2. Dhayanithy G, Subban K, Chelliah J (2019) Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol 19:22. https://doi.org/10.1186/s12866-019-1386-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507. https://doi.org/10.1017/S0953756201004956

    Article  Google Scholar 

  4. Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62. https://doi.org/10.3923/jm.2011.54.62

  5. Bezerra JDP, Machado AR, Firmino AL, Rosado AWC, Souza CAF, Souza-Motta CM, Freire KTLS, Paiva LM, Magalhães OMC, Pereira OL, Crous PW, Oliveira TGL, Abreu VP, Fan X (2018) Mycological diversity description I. Acta Bot Bras 32:656–666. https://doi.org/10.1590/0102-33062018abb0154

    Article  Google Scholar 

  6. Silva LF, Freire KTLS, Araújo-Magalhães GR, Agamez-Montalvo GS, Sousa MA, Costa-Silva TA, Paiva LM, Pessoa-Junior A, Bezerra JDP, Souza-Motta CM (2018) Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for L-asparaginase production. World J Microbiol Biotechnol 34:162. https://doi.org/10.1007/s11274-018-2547-z

    Article  CAS  PubMed  Google Scholar 

  7. Pádua APSL, Freire KTLS, Oliveira TGL, Silva LF, Araújo-Magalhães GR, Agamez-Montalvo GS, Silva IR, Bezerra JDP, Souza-Motta CM (2019) Fungal endophyte diversity in the leaves of the medicinal plant Myracrodruon urundeuva in a Brazilian dry tropical forest and their capacity to produce L-asparaginase. Acta Bot Bras 33:39–49. https://doi.org/10.1590/0102-33062018abb0108

    Article  Google Scholar 

  8. Ferreira MC, Cantrell CL, Wedge DE, Gonçalves VN, Jacob MR, Khan S, Rosa CA, Rosa LH (2017) Diversity of the endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from the endangered Brazilian rupestrian grasslands. Biochem Syst Ecol 71:163–169. https://doi.org/10.1016/j.bse.2017.02.006

    Article  CAS  Google Scholar 

  9. Santos MGS, Bezerra JDP, Svedese VM, Sousa MA, Silva DCV, Maciel MHC, Paiva LM, Porto ALF, Souza-Motta CM (2015) Screening of endophytic fungi from cactus of the Brazilian tropical dry forest according to their L-asparaginase activity. Sydowia 67:147–156. https://doi.org/10.12905/0380.sydowia67-2015-0147

    Article  Google Scholar 

  10. Cruz R, Lima JS, Fonseca JC, Fernandes MJS, Lima DMM, Duda GP, Moreira KA, Souza-Motta CM (2013) Diversity of filamentous fungi of area from Brazilian Caatinga and high-level tannase production using mango (Mangifera indica L.) and Surinam cherry (Eugenia uniflora L.) leaves under SSF. Adv in Microbiol 3:52–60. https://doi.org/10.4236/aim.2013.38A009

    Article  Google Scholar 

  11. Cruz R, Ramos SMS, Fonseca JC, Souza-Motta CM, Moreira KA (2017) Anthropization effects on the filamentous fungal community of the Brazilian Catimbau National Park. Rev Bras Cienc Solo 41:1–13. https://doi.org/10.1590/18069657rbcs20160373

    Article  CAS  Google Scholar 

  12. Silva JMC, Leal IR, Tabarelli M (2018) Caatinga: the largest tropical dry forest region in South America. Springer, Cham

    Google Scholar 

  13. Barbosa RDN, Bezerra JDP, Santos ACS, Melo RFR, Houbraken J, Oliveira NT, Souza-Motta CM (2020) Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov. Acta Bot Bras 34:409–429. https://doi.org/10.1590/0102-33062019abb0411

    Article  Google Scholar 

  14. Rocha LGM, Drummond JA, Ganem RS (2010) Parques nacionais brasileiros: problemas fundiários e alternativas para sua resolução. Rev Sociol Polít 18:205–226. https://doi.org/10.1590/S0104-44782010000200013

    Article  Google Scholar 

  15. Souza-Silva RF, Rapini A, Morales JF (2010) Mandevilla catimbauensis (Apocynaceae), a new species from the semi-arid Region, Pernambuco, Brazil. Ed J of Botany 67:1–5. https://doi.org/10.1017/S0960428609990230

    Article  Google Scholar 

  16. Santos S, Delgado Jr G, Alves M (2012) Espécies raras e ameaçadas no PARNA Catimbau. https://23d61a9f-4a20-4a84-8b38-d9ded0cf6a76.filesusr.com/ugd/4c522e_206273cf8c7d42a99e2f23153f824126.pdf. Accessed 27 Aug 2020

  17. Delgado-Junior GC, Alves M (2017) Diversity of climbing plants in Parque Nacional do Catimbau, Pernambuco, Brazil. Rodriguésia 68:347–377. https://doi.org/10.1590/2175-7860201768206

    Article  Google Scholar 

  18. Ribeiro RV, Mariano DB, Arunachalam K, Soares IM, Aguiar RWS, Ascêncio SD, Ribeiro M, Colodel EM, Martins DTO (2019) Chemical characterization and toxicological assessment of hydroethanolic extract of Mandevilla velame xylopodium. Rev Bras Farmacogn 29:605–612. https://doi.org/10.1016/j.bjp.2019.05.002

    Article  CAS  Google Scholar 

  19. Costa-Silva TA, Costa IM, Biasoto HP, Lima GM, Silva C, Pessoa A, Monteiro G (2020) Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev 43:100651. https://doi.org/10.1016/j.blre.2020.100651

    Article  CAS  PubMed  Google Scholar 

  20. Jiao L, Chi H, Lu Z, Zhang C, Chia SR, Show PL, Tao Y, Lu F (2020) Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. J Biosci Bioeng 129:672–678. https://doi.org/10.1016/j.jbiosc.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  21. Krishnakumar T, Visvanathan R (2014) Acrylamide in food products: a review. J Food Process Technol 5:7. https://doi.org/10.4172/2157-7110.1000344

    Article  Google Scholar 

  22. Dourado C, Pinto CA, Cunha S, Casal S, Saraiva JA (2020) A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology. Innov Food Sci Emerg Tecnol 60:102310. https://doi.org/10.1016/j.ifset.2020.102310

    Article  CAS  Google Scholar 

  23. Köppen W (1948) Climatología: Con un estudio de los climas de la Tierra. Fondo de Cultura Economica, Mexico

    Google Scholar 

  24. Bezerra JDP, Nascimento CCF, Barbosa RN, Silva DCV, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz J Microbiol 46:49–57. https://doi.org/10.1590/S1517-838246120130657

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bezerra JDP, Oliveira RJV, Paiva LM, Silva GA, Groenewald JZ, Crous PW, Souza-Motta CM (2017) Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus. Mycol Progress 16:297–309. https://doi.org/10.1007/s11557-016-1254-0

    Article  Google Scholar 

  26. Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  27. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58. https://doi.org/10.2307/1411

    Article  Google Scholar 

  28. Mendiburu F (2017) Agricolae: statistical procedures for agricultural research. R package version 1.2-5. https://CRAN.R-project.org/package=agricolae. Accessed 25 Apr 2020

  29. Oksanen J, Blanchet FG, Friendly M et al. (2017) Package ‘vegan’: community ecology package in R package, version 2.4-0. https://github.com/vegandevs/vegan. Accessed 25 Apr 2020

  30. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  31. Loureiro CB, Borges KS, Andrade AF, Tone LG, Said S (2012) Purification and biochemical characterization of native and pegylated form of L-asparaginase from Aspergillus terreus and evaluation of its antiproliferative activity. Adv Microbiol 2:138–145. https://doi.org/10.4236/aim.2012.22019

    Article  Google Scholar 

  32. Gulati R, Saxena RK, Gupta R (1997) A rapid plate assay for screening L-asparaginase producing micro-organisms. Lett Appl Microbiol 24:23–26. https://doi.org/10.1046/j.1472-765X.1997.00331.x

    Article  CAS  PubMed  Google Scholar 

  33. Drainas C, Kinghorn JR, Pateman JA (1977) Aspartic hydroxamate resistance and asparaginase regulation in the fungus Aspergillus nidulans. J Gen Microbiol 98:493–501. https://doi.org/10.1099/00221287-98-2-493

    Article  CAS  Google Scholar 

  34. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    Google Scholar 

  35. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery. Wiley, New Jersey

    Google Scholar 

  36. Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell Plant Prot J 10:51–66. https://doi.org/10.1515/hppj-2017-0006

    Article  Google Scholar 

  37. Kareem SO, Akpan I, Ojo OP (2008) Antimicrobial activities of Calotropis procera on selected pathogenic microorganisms. Afr J Biomed Res 11:105–110

    Google Scholar 

  38. Na R, Jiajia L, Dongliang Y, Yingzi P, Juan H, Xiong L, Nana Z, Jing Z, Yitian L (2016) Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol Res 192:114–121. https://doi.org/10.1016/j.micres.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  39. Nascimento TL, Oki Y, Lima DMM, Almeida-Cortez JS, Fernandes GW, Souza-Motta CM (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86. https://doi.org/10.1016/j.funeco.2014.10.004

    Article  Google Scholar 

  40. Koide RT, Ricks KD, Davis ER (2017) Climate and dispersal influence the structure of leaf fungal endophyte communities of Quercus gambelii in the eastern Great Basin, USA. Fungal Ecol 30:19–28. https://doi.org/10.1016/J.FUNECO.2017.08.002

    Article  Google Scholar 

  41. Harrison JG, Griffin EA (2020) The diversity and distribution of endophytes across biomes, plant phylogeny, and host tissues—how far have we come and where do we go from here? Environ Microbiol 22:2107–2123. https://doi.org/10.1111/1462-2920.14968

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  43. Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826. https://doi.org/10.1139/b02-069

    Article  Google Scholar 

  44. Pandey AK, Reddy MS, Suryanarayanan TS (2003) ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol Res 107:439–444. https://doi.org/10.1017/S0953756203007494

    Article  CAS  PubMed  Google Scholar 

  45. Hilarino MPA, Silveira FAO, Oki Y, Rodrigues L, Santos JC, Corrêa Junior A, Fernandes GW, Rosa CA (2011) Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae). Acta Bot Bras 25:815–821. https://doi.org/10.1590/S0102-33062011000400008

    Article  Google Scholar 

  46. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459

    Article  PubMed  Google Scholar 

  47. Bezerra JDP, Santos MGS, Barbosa RN, Svedese VM, Lima DMM, Fernandes MJS, Gomes BS, Paiva LM, Almeida-Cortez JS, Souza-Motta CM (2013) Fungal endophytes from cactus Cereus jamacaru in Brazilian tropical dry forest: a first study. Symbiosis 60:53–63. https://doi.org/10.1007/s13199-013-0243-1

    Article  Google Scholar 

  48. Oliveira RJV, Sousa NMF, Pinto Neto WP, Bezerra JL, Silva GA, Cavalcanti MAQ (2020) Seasonality affects the community of endophytic fungi in coconut (Cocos nucifera) crop leaves. Acta Bot Bras 34:704–711. https://doi.org/10.1590/0102-33062020abb0106

    Article  Google Scholar 

  49. Oliveira TGL, Bezerra JDP, Silva IR, Souza-Motta CM, Magalhães OMC (2020) Diversity of endophytic fungi in the leaflets and branches of Poincianella pyramidalis, an endemic species of Brazilian tropical dry forest. Acta Bot Bras 34:755–764. https://doi.org/10.1590/0102-33062020abb0253

    Article  Google Scholar 

  50. Crous PW, Wingfield MJ, Burgess TI et al (2017) Fungal planet description sheets: 625–715. Persoonia 39:270–467. https://doi.org/10.3767/persoonia.2017.39.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wikee S, Lombard L, Crous PW, Nakashima C, Motohashi K, Chukeatirote E, Alias SA, McKenzie EHC, Hyde KD (2013) Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Divers 60:91–105. https://doi.org/10.1007/s13225-013-0235-8

    Article  Google Scholar 

  52. Kumar NSM, Ramasamy R, Manonmani HK (2013) Production and optimization of L-asparaginase from Cladosporium sp. using agricultural residues in solid state fermentation. Ind Crops Prod 43:150–158. https://doi.org/10.1016/j.indcrop.2012.07.023

    Article  CAS  Google Scholar 

  53. Krishnapura PR, Belur PD (2016) Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J Mol Catal B Enzym 124:83–91. https://doi.org/10.1016/j.molcatb.2015.12.007

    Article  CAS  Google Scholar 

  54. Da Rocha WRV, Costa-Silva TA, Montalvo GSA, Feitosa VA, Machado SEF, de Souza Lima GM, Pessoa-Jr A, Alves HS (2019) Screening and optimizing fermentation production of L-asparaginase by Aspergillus terreus strain S-18 isolated from the Brazilian Caatinga Biome. J Appl Microb 126:1426–1437. https://doi.org/10.1111/jam.14221

    Article  CAS  Google Scholar 

  55. Costa-Silva TA, Camacho-Córdova DI, Agamez-Montalvo GS, Parizotto LA, Sánchez-Moguel I, Pessoa-Jr A (2019) Optimization of culture conditions and bench-scale production of anticancer enzyme L-asparaginase by submerged fermentation from Aspergillus terreus CCT 7693. Prep Biochem Biotechnol 49:95–104. https://doi.org/10.1080/10826068.2018.1536990

    Article  CAS  PubMed  Google Scholar 

  56. Thakur M, Lincoln L, Niyonzima FN, More SS (2013) Isolation, purification and characterization of fungal extracellular L-asparaginase from Mucor hiemalis. J Biocatal Biotransformation 2:2. https://doi.org/10.4172/2324-9099.1000108

    Article  Google Scholar 

  57. Farag AM, Hassan SW, Beltagy EA, El-Shenawy MA (2015) Optimization of production of anti-tumor L-asparaginase by free and immobilized marine Aspergillus terreus. Egypt J Aquat Res 41:295–302. https://doi.org/10.1016/j.ejar.2015.10.002

    Article  Google Scholar 

  58. Vieira WF, Correa HT, Campos ES, Sette LD, Pessoa A Jr, Cardoso VL, Filho UC (2020) A novel multiple reactor system for the long-term production of L-asparaginase by Penicillium sp. LAMAI 505. Process Biochem 90:23–31. https://doi.org/10.1016/j.procbio.2019.11.012

    Article  CAS  Google Scholar 

  59. Dias FFG, Sato HH (2016) Sequential optimization strategy for maximum L-asparaginase production from Aspergillus oryzae CCT 3940. Biocatal Agric Biotechnol 6:33–39. https://doi.org/10.1016/j.bcab.2016.02.006

    Article  Google Scholar 

  60. Banyal A, Thakur V, Thakur R, Kumar P (2021) Endophytic microbial diversity: a new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics. Curr Microbiol. https://doi.org/10.1007/s00284-021-02359-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Programa de Pós-Graduação em Biociência Animal of the Universidade Federal Rural de Pernambuco (UFRPE) and all members of the Departamento de Micologia Prof. Chaves Batista and of the Laboratório de Micologia Ambiental (both at the Universidade Federal de Pernambuco). We especially thank Dr. Laura Paiva, Dr. Alexandre Machado, Dr. Karla Freire, Dr. Renan Barbosa, Ana Patrícia Pádua (MSc), Aline Barboza (MSc), Tamara Caldas (MSc), and Thays Oliveira (MSc).

Funding

Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE, financial support and scholarship IBPG-0970-5.05/14), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) in Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Gianne R. Araújo-Magalhães, Cristina M. Souza-Motta, and Keila A. Moreira implemented the project; Gianne R. Araújo-Magalhães collected the plants; Gianne R. Araújo-Magalhães and Leticia F. da Silva performed the fungal endophytes isolation and L-asparaginase production parts of the study; Gualberto S. Agamez-Montalvo designed the experiment and statistically analysed the L-Asparaginase production results; Iolanda R. da Silva performed the ecological analysis; Jadson D.P. Bezerra performed the phylogenetic analysis; Gianne R. Araújo-Magalhães, Marília H.C. Maciel, and Jadson D.P. Bezerra wrote the paper. All the authors reviewed and approved the final version of the paper.

Corresponding authors

Correspondence to Jadson D. P. Bezerra or Keila A. Moreira.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Melissa Fontes Landell

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo-Magalhães, G.R., Maciel, M.H.C., da Silva, L.F. et al. Fungal endophytes from leaves of Mandevilla catimbauensis (Apocynaceae): diversity and potential for L-asparaginase production. Braz J Microbiol 52, 1431–1441 (2021). https://doi.org/10.1007/s42770-021-00505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00505-3

Keywords

Navigation