Skip to main content

Advertisement

Log in

Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for l-asparaginase production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to report the richness of endophytic Penicillium and Talaromyces species isolated from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest (Caatinga), to verify their ability to produce the enzyme l-asparaginase and to partially optimise the production of biomass and l-asparaginase of the best enzyme producer. A total of 184 endophytes were isolated, of which 52 (29%) were identified through morphological and phylogenetic analysis using β-tubulin sequences into nine putative species, four in Penicillium and five in Talaromyces. Talaromyces diversus and T. cf. cecidicola were the most frequent taxa. Among the 20 endophytic isolates selected for l-asparaginase production, 10 had the potential to produce the enzyme (0.50–2.30 U/g), especially T. cf. cecidicola URM 7826 (2.30 U/g) and Penicillium sp. 4 URM 7827 (1.28 U/g). As T. cf. cecidicola URM 7826 exhibited significant ability to produce the enzyme, it was selected for the partial optimisation of biomass and l-asparaginase production. Results of the 23 factorial experimental design showed that the highest dry biomass (0.66 g) was obtained under pH 6.0, inoculum concentration of 1 × 108 and 1% l-proline. However, the inoculum concentration was found to be statistically significant, the pH was marginally significant and the concentration of l-proline was not statistically significant. l-Asparaginase production varied between 0.58 and 1.02 U/g and did not reach the optimal point for enzyme production. This study demonstrates that T. catimbauensis is colonised by different Penicillium and Talaromyces species, which are indicated for enzyme production studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves JJA, Araújo MA, Nascimento SS (2009) Degradação da Caatinga: uma investigação ecogeográfica. Rev Caatinga 22(3):126–135

    Google Scholar 

  • Amena S, Vishalakshi N, Prabhakar M, Dayanand A, Lingappa K (2010) Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Braz J Microbiol 41(1):173–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100(26):15649–15654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar G, Renganathan S (2012) Optimization of L-asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network-linked genetic algorithm. Asia-Pac J Chem Eng 7(2):212–220

    CAS  Google Scholar 

  • Bedaiwy MY, Awadalla OA, Abou-Zeid AM, Hamada HT (2016) Optimal conditions for production of L-asparaginase from Aspergillus tamarii. Egypt J Exp Biol (Bot) 12(2):229–237

    Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motta CM (2012a) Richness of endophytic fungi isolated from Opuntia ficus-indica. Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    CAS  PubMed  Google Scholar 

  • Bezerra JDP, Lopes DHG, Santos MGS, Svedese VM, Paiva LM, Almeida-Cortez JS, Souza-Motta CM (2012b) Riqueza de micro-organismos endofíticos em espécies da família Cactaceae. Bol Soc Latin Carib Cact Suc 9(2):19–23

    Google Scholar 

  • Bezerra JDP, Santos MGS, Barbosa RN, Svedese VM, Lima DMM, Fernandes MJS, Gomes BS, Paiva LM, Almeida-Cortez JS, Souza-Motta CM (2013) Fungal endophytes from cactus Cereus jamacaru in Brazilian tropical dry forest: a first study. Symbiosis 60(2):53–63

    Google Scholar 

  • Bezerra JDP, Nascimento CCF, Barbosa RN, Silva DCV, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz J Microbiol 46(1):49–57

    PubMed  PubMed Central  Google Scholar 

  • Bezerra JDP, Oliveira RJV, Paiva LM, Silva GA, Groenewald JZ, Crous PW, Souza-Motta CM (2017) Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus. Mycol Prog 16(4):297–309

    Google Scholar 

  • Bischoff KM, Wicklow DT, Jordan DB, Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58(5):499–503

    CAS  PubMed  Google Scholar 

  • Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, Innovation, and Discovery. Wiley, New Jersey

    Google Scholar 

  • Bussaban B, Lumyong S, Lumyong P, McKenzie EH, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Microbiol 47(10):943–948

    CAS  PubMed  Google Scholar 

  • Chapla VM, Biasetto CR, Araujo AR (2013) Fungos endofíticos: uma fonte inexplorada e sustentável de novos e bioativos produtos naturais. Rev Virtual Quim 5(3):421–437

    CAS  Google Scholar 

  • Chow YY, Ting ASY (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6:869–876

    CAS  PubMed  Google Scholar 

  • Chow YY, Ting ASY (2017) Influence of glucose and L-asparagine concentrations on L-asparaginase production by endophytic fungi. J Microbiol Biotechnol Food Sci 7(2):186

    CAS  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI et al (2017) Fungal Planet description sheets: 625–715. Persoonia 39:270–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devi S, Azmi W (2012) One step purification of glutaminase free L-asparaginase from Erwinia carotovora with anticancerous activty. Int J Life Sci Pharma Res 2(3):36–45

    CAS  Google Scholar 

  • Dias FFG, Sato HH (2016) Sequential optimization strategy for maximum L-asparaginase production from Aspergillus oryzae CCT 3940. Biocatal Agric Biotechnol 6:33–39

    Google Scholar 

  • Drainas C, Kinghorn JR, Pateman JA (1977) Aspartic hydroxamate resistance and asparaginase regulation in the fungus Aspergillus nidulans. Microbiology 98(2):493–501

    CAS  Google Scholar 

  • Duval M, Suciu S, Ferster A, Rialland X, Nelken B, Lutz P, Benoit Y, Robert A, Manel AM, Vilmer E, Otten J, Philippe N (2002) Comparison of Escherichia coli–asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer—Children’s Leukemia Group phase 3 trial. Blood 99(8):2734–2739

    CAS  PubMed  Google Scholar 

  • Elshafei AM, Hassan MM, Ali MA-E, Mahmoud DA, Elghonemy DH (2012) Screening and optimization of L-asparaginase and L-glutaminase production by some filamentous fungi. Adv Food Sci 34(3):150–158

    CAS  Google Scholar 

  • Fabricante JR, Araújo KCT, Ferreira JVA, Castro RA, Silva ACCP, Siqueira-Filho JA (2014) Categorização do risco de extinção de Dyckia limae LB Sm. e Tillandsia catimbauensis Leme. W. T. & JA S. por meio de critérios de distribuição geográfica. Biotemas 27(2):203–207

    Google Scholar 

  • Ferreira JVA, Fabricante JR, Siqueira-Filho JA (2015) Checklist preliminar de Bromeliaceae do Parque Nacional do Catimbau, Pernambuco, Brasil. Natureza on line 13(2):92–97

    Google Scholar 

  • Fischer PJ, Sutton BC, Petrini LE, Petrini O (1994) Fungal endophytes from Opuntia stricta: a first report. Nova Hedwigia 59:195–200

    Google Scholar 

  • Freire KTLS, Araújo GR, Bezerra JDP, Barbosa RN, Silva DC, Svedese VM, Souza-Motta CM (2015) Fungos endofíticos de Opuntia ficus-indica. (L.) Mill.(Cactaceae) sadia e infestada por Dactylopius opuntiae (Cockerell, 1896) (Hemiptera: Dactylopiidae). Gaia Scientia 9(2):104–110

    Google Scholar 

  • Gbolagade J, Sobowale A, Adejoye D (2006) Optimization of sub-merged culture conditions for biomass production in Pleurotus florida (mont.) Singer, a Nigerian edible fungus. Afr J Biotechnol 5(16):1464–1469

    CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilleme CM, Delgado RF, Navarro JS, Aguirre IA, Solà SR, Codina JST et al (2013) Actualización del tratamiento con L-asparraginasa en Pediatría. An Pediatr 79(5):329.e1–329.e11

    Google Scholar 

  • Gulati R, Saxena RK, Gupta R (1997) A rapid plate assay for screening L-asparaginase producing micro-organisms. Lett Appl Microbiol 24(1):23–26

    CAS  PubMed  Google Scholar 

  • Gupta N, Dash SJ, Basak UC (2009) L-asparaginases from fungi of Bhitarkanika mangrove ecosystem. Asia-Pac J Mol Biol Biotechnol 17(1):27–30

    Google Scholar 

  • Hendriksen HV, Kornbrust BA, Østergaard PR, Stringer MA (2009) Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J Agric Food Chem 57(10):4168–4176

    CAS  PubMed  Google Scholar 

  • Hosamani R, Kaliwal BB (2011) L-asparaginase-an anti tumor agent production by Fusarium equiseti using solid state fermentation. Int J Drug Discov 3(2):88–99

    Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JS, You YH, Bae JJ, Khan SA, Kim JG, Choo YS (2011) Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J Coast Res 27(3):544–548

    Google Scholar 

  • Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio (2018) Parna do Catimbau. http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/caatinga/unidades-de-conservacao-caatinga/2135-parna-do-catimbau. Accessed 27 Jan 2018

  • Jain R, Zaidi KU, Verma Y, Saxena P (2012) L-asparaginase: A promising enzyme for treatment of acute lymphoblastic leukiemia. People’s J Sci Res 5(1):29–35

    Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32

    Google Scholar 

  • Jha SK, Pasrija D, Sinha RK, Singh HR, Nigam VK, Vidyarthi AS (2012) Microbial L-asparaginase: a review on current scenario and future prospects. Int J Pharm Sci Res 3(9):3076–3090

    CAS  Google Scholar 

  • Kalyanasundaram I, Nagamuthu J, Srinivasan B, Pachayappan A, Muthukumarasamy S (2015) Production, purification and characterisation of extracellular L-asparaginase from salt marsh fungal endophytes. World J Pharm Pharm Sci 4(3):663–677

    CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khidir HH, Eudy DM, Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2010) A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J Arid Environ 74(1):35–42

    Google Scholar 

  • Kornbrust BA, Stringer MA, Lange NEK, Hendriksen HV (2009) Asparaginase—an enzyme for acrylamide reduction in food products. In: Whitehurst RJ, Oort MV (eds) Enzymes in food technology, 2nd edn. Wiley-Blackwell, Hoboken, pp 59–87

    Google Scholar 

  • Krishnakumar T, Visvanathan R (2014) Acrylamide in food products: a review. J Food Process Technol 5(7):1–9

    Google Scholar 

  • Krishnapura PR, Belur PD (2016) Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J Mol Catal B 124:83–91

    CAS  Google Scholar 

  • Kumar NSM, Manonmani HK (2013) Purification, characterization and kinetic properties of extracellular L-asparaginase produced by Cladosporium sp. World J Microbiol Biotechnol 29(4):577–587

    Google Scholar 

  • Kumar S, Dasu VV, Pakshirajan K (2010) Localization and production of novel L-asparaginase from Pectobacterium carotovorum MTCC 1428. Process Biochem 45(2):223–229

    CAS  Google Scholar 

  • Kumar NSM, Ramasamy R, Manonmani HK (2013) Production and optimization of L-asparaginase from Cladosporium sp. using agricultural residues in solid state fermentation. Ind Crops Prod 43:150–158

    Google Scholar 

  • Kumar NSM, Shimray CA, Indrani D, Manonmani HK (2014) Reduction of acrylamide formation in sweet bread with L-asparaginase treatment. Food Bioprocess Technol 7(3):741–748

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60(1):137–151

    Google Scholar 

  • Leal IR, Tabarelli M, Silva JMC (2003) Ecologia e conservação da Caatinga. Editora Universitária UFPE, Recife

    Google Scholar 

  • Leal IR, Silva JD, Tabarelli M, Lacher JTE (2005) Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil. Megadiversidade 1(1):139–146

    Google Scholar 

  • Loro M, Valero-Jiménez CA, Nozawa S, Márquez LM (2012) Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. J Arid Environ 85:46–55

    Google Scholar 

  • Loureiro CB, Borges KS, Andrade AF, Tone LG, Said S (2012) Purification and biochemical characterization of native and pegylated form of L-Asparaginase from Aspergillus terreus and evaluation of its antiproliferative activity. Adv Microbiol 2:138–145

    CAS  Google Scholar 

  • Manasa C, Nalini MS (2014) L-Asparaginase activity of fungal endophytes from Tabernaemontana heyneana wall (Apocynaceae), endemic to the Western Ghats (India). Int Sch Res Not. https://doi.org/10.1155/2014/925131

    Article  PubMed  PubMed Central  Google Scholar 

  • Maracajá PB, Benevides DS (2006) Estudo da flora herbácea da Caatinga no município de Caraúbas no Estado do Rio Grande do Norte. Rev Biol Ciênc Terra 6(1):165–175

    Google Scholar 

  • Márquez SS, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Meng L, Sun P, Tang H, Li L, Draeger S, Schulz B, Yi Y (2011) Endophytic fungus Penicillium chrysogenum, a new source of hypocrellins. ‎Biochem Syst Ecol 39(2):163–165

    CAS  Google Scholar 

  • Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    Google Scholar 

  • Niharika YC, Supriya S (2014) Production of L-asparaginase by Fusarium oxysporum using submerged fermentation. Int J Pharm Sci Invent 3:32–39

    Google Scholar 

  • Nomme J, Su Y, Konrad M, Lavie A (2012) Structures of apo and product-bound human L-asparaginase: insights into the mechanism of autoproteolysis and substrate hydrolysis. Biochemistry 51(34):6816–6826

    CAS  PubMed  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Patro KR, Gupta N (2012) Extraction, purification and characterization of L-asparaginase from Penicillium sp. by submerged fermentation. Int J Biotechnol Mol Biol Res 3(3):30–34

    CAS  Google Scholar 

  • Peixoto Neto PAS, Azevedo JL, Caetano LC (2004) Microrganismos endofíticos em plantas: status atual e perspectivas. BLACPMA 3(4):69–72

    Google Scholar 

  • Pinheiro EAA, Carvalho JM, Santos DCP, Feitosa ADO, Marinho PSB, Guilhon GMSP, Marinho AMDR (2013) Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res 27(18):1633–1638

    CAS  PubMed  Google Scholar 

  • Pires IM, Silva AV, Santos MGS, Bezerra JDP, Barbosa RN, Silva DCV et al (2015) Potencial antibacteriano de fungos endofíticos de cactos da Caatinga, uma Floresta Tropical Seca no Nordeste do Brasil. Gaia Scientia 9(2):155–161

    Google Scholar 

  • R Development Core Team (2015) R: a language, environment for statistical computing. The R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Santos JC, Almeida-Cortez JS, Fernandes GW (2011) Richness of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. Rev Bras Entomol 55(1):45–54

    Google Scholar 

  • Santos IP, Bezerra JDP, Souza-Motta CM, Cavalcanti MS, Lima VLM (2015a) Endophytic mycobiota from leaves of Indigofera suffruticosa Miller (Fabaceae): the relationship between seasonal change in Atlantic Coastal Forest and tropical dry forest (Caatinga), Brazil. Afr J Microbiol Res 9(18):1227–1235

    Google Scholar 

  • Santos MGS, Bezerra JDP, Svedese VM, Sousa MA, Silva DCV, Maciel MDHC, Paiva LM, Porto ALF, Souza-Motta CM (2015b) Screening of endophytic fungi from cactus of the Brazilian tropical dry forest according to their L-asparaginase activity. Sydowia 67:147–156

    Google Scholar 

  • Sarquis MIM, Oliveira EMM, Santos AS, Costa GLD (2004) Production of L-asparaginase by filamentous fungi. Mem Inst Oswaldo Cruz 99(5):489–492

    CAS  PubMed  Google Scholar 

  • Saxena RK, Sinha U (1981) L-Asparaginase and glutaminase activities in the cultures filtrates of Aspergillus nidulans. Curr Sci 50:218–219

    CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    CAS  Google Scholar 

  • Silva RLO, Luz JS, Silveira EB, Cavalcante UMT (2006) Fungos endofíticos em Annona spp.: isolamento, caracterização enzimática e promoção do crescimento em mudas de pinha (Annona squamosa L.). Acta Bot Bras 20(3):649–655

    Google Scholar 

  • Soltani J, Moghaddam MSH (2015) Fungal endophyte diversity and bioactivity in the mediterranean cypress Cupressus sempervirens. Curr Microbiol 70(4):580–586

    CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Wang Q, Lu X, Okane I, Kakishima M (2012) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol Prog 11(3):781–790

    Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109(5):635–639

    PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. ‎Nat Prod Rep 18(4):448–459

    CAS  PubMed  Google Scholar 

  • Thakur M, Lincoln L, Niyonzima FN, More SS (2013) Isolation, Purification and characterization of fungal extracellular L-Asparaginase from Mucor Hiemalis. J Biocatal Biotransform 2(2):1–9

    Google Scholar 

  • Theantana T, Hyde KD, Lumyong S (2007) Asparaginase production by endophytic fungi isolated from some Thai medicinal plants. KMITL Sci Technol J 7(S1):13–18

    Google Scholar 

  • Theantana T, Hyde KD, Lumyong S (2009) Asparaginase production by endophytic fungi from Thai medicinal plants: citoxicity properties. IJIB 7(1):1–8

    CAS  Google Scholar 

  • Thirunavukkarasu N. Suryanarayanan TS, Murali TS, Ravishankar JP, Gummadi SN (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2(2):147–155

    Google Scholar 

  • Ting ASY, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53(3):541–553

    Google Scholar 

  • Velloso AL, Sampaio EVSB, Pareyn FGC (2002) Ecorregiões propostas para o bioma Caatinga. Associação Plantas do Nordeste; Instituto de Conservação Ambiental. The Nature Conservancy do Brasil, Recife

    Google Scholar 

  • Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visagie CM, Renaud JB, Burgess KMN, Malloch DW, Clark D, Ketch L, Seifert KA (2016) Fifteen new species of Penicillium. Persoonia 36:247–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17(9):10754–10773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Starr JL, Krumm JL, Sword GA (2016) The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiol Ecol 92(10):1–15

    Google Scholar 

  • Zuo S, Zhang T, Jiang B, Mu W (2015) Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles 19(4):841–851

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support and scholarships. J.D.P. Bezerra also thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance code 001) and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) for the postdoctoral fellowships. We are also grateful for the suggestions made by two anonymous reviewers. We extend our thanks to Aline Barboza, Ana P. Pádua, Tamara Caldas, Dr. Marília Maciel, and the students of the Laboratório de Micologia Ambiental/UFPE for their technical help and processing of samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jadson D. P. Bezerra or Cristina M. Souza-Motta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 67 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.F., Freire, K.T.L.S., Araújo-Magalhães, G.R. et al. Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for l-asparaginase production. World J Microbiol Biotechnol 34, 162 (2018). https://doi.org/10.1007/s11274-018-2547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2547-z

Keywords

Navigation