Skip to main content

Advertisement

Log in

Highly Transparent and Flexible All-Nanofiber-Based Piezocomposite Containing BaTiO3-Embedded P(VDF-TrFE) Nanofibers for Harvesting and Monitoring Human Kinetic Movements

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators (PENGs) consisting of piezoelectric nanofiber (NF) mats and metal-electroplated microfiber (MF) electrodes using electrospinning and electroplating methods. Percolative non-woven structure and high flexibility of the NF mats and MF electrodes allowed us to achieve highly transparent and flexible piezocomposites. A viscoelastic solution, mixed with P(VDF-TrFE) and BaTiO3, was electrospun into piezoelectric NFs with a piezoelectric coefficient d33 of 21.2 pC/N. In addition, the combination of electrospinning and electroplating techniques enabled the fabrication of Ni-plated MF-based transparent conductive electrodes (TCEs), contributing to the high transparency of the resulting piezocomposite. The energy-harvesting efficiencies of the BaTiO3-embedded NF-based PENGs with transmittances of 86% and 80% were 200 and 240 V/MPa, respectively, marking the highest values in their class. Moreover, the output voltage driven by the coupling effect of piezoelectricity and triboelectricity during finger tapping was 25.7 V. These highly efficient energy-harvesting performances, along with the transparent and flexible features of the PENGs, hold great promise for body-attachable energy-harvesting and sensing devices, as demonstrated in this study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Should any raw data be needed in the paper, the corresponding author will provide the source data upon reasonable request.

References

  1. Zare V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers Manage. 2015;105:127.

    Article  Google Scholar 

  2. Musa M, Hill C, Sotiropoulos F, Guala M. Performance and resilience of hydrokinetic turbine arrays under large migrating fluvial bedforms. Nat Energy. 2018;3:839.

    Article  Google Scholar 

  3. Pan H, Li H, Zhang T, Laghari AA, Zhang Z, Yuan Y. A portable renewable wind energy harvesting system integrated S-rotor and H-rotor for self-powered applications in high-speed railway tunnels. Energy Convers Manage. 2019;196:56.

    Article  Google Scholar 

  4. Wang X, Song W-Z, You M-H, Zhang J, Yu M, Fan Z, Ramakrishna S, Long Y-Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano. 2018;12:8588.

    Article  CAS  PubMed  Google Scholar 

  5. Luo J, Wang Z, Xu L, Wang AC, Han K, Jiang T, Lai Q, Bai Y, Tang W, Fan FR. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat Commun. 2019;10:5147.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gu L, Liu J, Cui N, Xu Q, Du T, Zhang L, Wang Z, Long C, Qin Y. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat Commun. 2020;11:1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang T, Pang H, An J, Lu P, Feng Y, Liang X, Zhong W, Wang ZL. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater. 2020;10:2000064.

    Article  CAS  Google Scholar 

  8. Harper W. Contact electrification of semiconductors. Br J Appl Phys. 1960;11:324.

    Article  Google Scholar 

  9. Lowell J. Tunnelling between metals and insulators and its role in contact electrification. J Phys D Appl Phys. 1979;12:1541.

    Article  CAS  Google Scholar 

  10. Grzybowski BA, Fialkowski M, Wiles JA. Kinetics of contact electrification between metals and polymers. J Phys Chem B. 2005;109:20511.

    Article  CAS  PubMed  Google Scholar 

  11. Willatzen M, Wang ZL. Contact electrification by quantum-mechanical tunneling. Research. 2019;2019:11.

    Article  Google Scholar 

  12. Nguyen V, Zhu R, Yang R. Environmental effects on nanogenerators. Nano Energy. 2015;14:49.

    Article  CAS  Google Scholar 

  13. Gu L, Cui N, Liu J, Zheng Y, Bai S, Qin Y. Packaged triboelectric nanogenerator with high endurability for severe environments. Nanoscale. 2015;7:18049.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Niu S, Yin Y, Yi F, You Z, Wang ZL. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv Energy Mater. 2015;5:1501467.

    Article  Google Scholar 

  15. Ahmed A, Hassan I, Helal AS, Sencadas V, Radhi A, Jeong CK, El-Kady MF. Triboelectric nanogenerator versus piezoelectric generator at low frequency (< 4 Hz): a quantitative comparison. Iscience. 2020;23: 101286.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater. 2022;34:2110291.

    Article  CAS  Google Scholar 

  17. Kang J, Liu T, Lu Y, Lu L, Dong K, Wang S, Li B, Yao Y, Bai Y, Fan W. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos B. 2022;245: 110229.

    Article  CAS  Google Scholar 

  18. Yu Y, Luo C, Chiba H, Shi Y, Narita F. Energy harvesting and wireless communication by carbon fiber-reinforced polymer-enhanced piezoelectric nanocomposites. Nano Energy. 2023;113: 108588.

    Article  CAS  Google Scholar 

  19. Roberts S. Dielectric and piezoelectric properties of barium titanate. Phys Rev. 1947;71:890.

    Article  CAS  Google Scholar 

  20. Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc. 1959;42:438.

    Article  CAS  Google Scholar 

  21. Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D, Waghmare U. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719.

    Article  CAS  PubMed  Google Scholar 

  22. Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312:242.

    Article  CAS  PubMed  Google Scholar 

  23. Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett. 2009;103: 257602.

    Article  PubMed  Google Scholar 

  24. Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK. High-performance lead-free piezoceramics with high curie temperatures. Adv Mater. 2015;27:6976.

    Article  CAS  PubMed  Google Scholar 

  25. Kawai H. The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys. 1969;8:975.

    Article  CAS  Google Scholar 

  26. Lovinger AJ. Ferroelectric polymers. Science. 1983;220:1115.

    Article  CAS  PubMed  Google Scholar 

  27. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q. A dielectric polymer with high electric energy density and fast discharge speed. Science. 2006;313:334.

    Article  CAS  PubMed  Google Scholar 

  28. Sousa R, Nunes-Pereira J, Ferreira J, Costa C, Machado A, Silva M, Lanceros-Mendez S. Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym Test. 2014;40:245.

    Article  CAS  Google Scholar 

  29. Martins P, Lopes A, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci. 2014;39:683.

    Article  CAS  Google Scholar 

  30. Lv F, Lin J, Zhou Z, Hong Z, Wu Y, Ren Z, Zhang Q, Dong S, Luo J, Shi J. In-situ electrostatic field regulating the recrystallization behavior of P (VDF-TrFE) films with high β-phase content and enhanced piezoelectric properties towards flexible wireless biosensing device applications. Nano Energy. 2022;100: 107507.

    Article  CAS  Google Scholar 

  31. Harrison J, Ounaies Z, Bushnell DM. Piezoelectric polymers. NASA Langley Research Center. 2001. https://ntrs.nasa.gov/citations/20020044745. Accessed 1 Dec 2001.

  32. An S, Jo HS, Li G, Samuel E, Yoon SS, Yarin AL. Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanoparticles. Adv Funct Mater. 2020;30:2001150.

    Article  CAS  Google Scholar 

  33. Choi D, Jo H, Yoon T, Park D, Kim K, Kim YI, Song YJ, Yoon SS, An S. Transparent, flexible, and highly sensitive piezocomposite capable of harvesting and monitoring kinetic movements of microbubbles in liquid. Adv Funct Mater. 2023;33:2307607.

    Article  CAS  Google Scholar 

  34. Shim J, Son DI, Lee JS, Lee J, Lim G-H, Cho H, Kim E-Y, Bu SD, Sungbin I, Jeong CK. BNNT-ZnO QDs nanocomposites for improving piezoelectric nanogenerator and piezoelectric properties of boron nitride nanotube. Nano Energy. 2022;93:106886.

    Article  CAS  Google Scholar 

  35. Kim S-R, Yoo J-H, Kim JH, Cho YS, Park J-W. Mechanical and piezoelectric properties of surface modified (Na, K) NbO3-based nanoparticle-embedded piezoelectric polymer composite nanofibers for flexible piezoelectric nanogenerators. Nano Energy. 2021;79: 105445.

    Article  CAS  Google Scholar 

  36. Yu D, Zheng Z, Liu J, Xiao H, Huangfu G, Guo Y. Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 2021;13:117.

    Article  Google Scholar 

  37. Lv F, Hong Z, Ahmad Z, Li H, Wu Y, Huang Y. Design of flexible piezoelectric nanocomposite for energy harvesters: a review. Energy Mater Adv. 2023;4:0043.

    Article  CAS  Google Scholar 

  38. Wang Z, Maruyama K, Narita F. A novel manufacturing method and structural design of functionally graded piezoelectric composites for energy-harvesting. Mater Des. 2022;214: 110371.

    Article  CAS  Google Scholar 

  39. Kim Y-G, Kim KT, Park SC, Heo DH, Hyeon DY, Mallem SPR, Park K-I. Enhanced poling efficiency via a maximized organic-inorganic interfacial effect for water droplet-driven energy harvesting. Nano Energy. 2022;98:107238.

    Article  CAS  Google Scholar 

  40. Taleb S, Badillo M, Flores-Ruiz FJ, Acuautla M. From synthesis to application: High-quality flexible piezoelectric sensors fabricated from tetragonal BaTiO3/P (VDF-TrFE) composites. Sens Actuators A. 2023;361: 114585.

    Article  CAS  Google Scholar 

  41. Yaseen HMA, Park S. P (VDF-TrFE)/BaTiO3 nanocomposite Langmuir-Schaefer thin film for piezoelectric nanogenerator. J Alloys Compd. 2023;952: 169940.

    Article  CAS  Google Scholar 

  42. Kim D, Yang Z, Cho J, Park D, Kim DH, Lee J, Ryu S, Kim SW, Kim M. High-performance piezoelectric yarns for artificial intelligence-enabled wearable sensing and classification. EcoMat. 2023;5: e12384.

    Article  CAS  Google Scholar 

  43. Su C, Zhang L, Zhang Y, Huang X, Ye Y, Xia Y, Gong Z, Qin X, Liu Y, Guo S. P (VDF-TrFE)/BaTiO3 nanofibrous membrane with enhanced piezoelectricity for high PM0. 3 Filtration and reusable face masks. ACS Appl Mater Interfaces. 2023;15:5845.

    Article  CAS  PubMed  Google Scholar 

  44. An S, Kim YI, Jo HS, Kim M-W, Swihart MT, Yarin AL, Yoon SS. Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Mater. 2018;143:174.

    Article  CAS  Google Scholar 

  45. Jo HS, Samuel E, Kwon H-J, Joshi B, Kim M-W, Kim T-G, Swihart MT, Yoon SS. Highly flexible transparent substrate-free photoanodes using ZnO nanowires on nickel microfibers. Chem Eng J. 2019;363:13.

    Article  Google Scholar 

  46. Salimi A, Yousefi AA. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test. 2003;22:699.

    Article  CAS  Google Scholar 

  47. Chen X, Parida K, Wang J, Xiong J, Lin MF, Shao J, Lee PS. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl Mater Interfaces. 2017;9:42200.

    Article  CAS  PubMed  Google Scholar 

  48. Arrigoni A, Brambilla L, Bertarelli C, Serra G, Tommasini M, Castiglioni C. P(VDF-TrFE) nanofibers: structure of the ferroelectric and paraelectric phases through IR and Raman spectroscopies. RSC Adv. 2020;10:37779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS. Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl Mater Interfaces. 2016;8:521.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan X, Gao X, Yang J, Shen X, Li Z, You S, Wang Z, Dong S. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy Environ Sci. 2020;13:152.

    Article  CAS  Google Scholar 

  51. Park S-E, Shrout TR. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys. 1804;1997:82.

    Google Scholar 

  52. Ma W, Cross LE. Flexoelectric effect in ceramic lead zirconate titanate. Appl Phys Lett. 2005;86: 072905.

    Article  Google Scholar 

  53. Shen Z-Y, Li Y-M, Jiang L, Li R-R, Wang Z-M, Hong Y, Liao R-H. Phase transition and electrical properties of LiNbO3-modified K0.49Na0.51NbO3 lead-free piezoceramics. J Mater Sci Mater Electron. 2011;22:1071.

    Article  CAS  Google Scholar 

  54. Chu B, Salem D. Flexoelectricity in several thermoplastic and thermosetting polymers. Appl Phys Lett. 2012;101: 103905.

    Article  Google Scholar 

  55. Janas VF, Safari A. Overview of fine-scale piezoelectric ceramic/polymer composite processing. J Am Ceram Soc. 1995;78:2945.

    Article  CAS  Google Scholar 

  56. Nunes-Pereira J, Sencadas V, Correia V, Rocha JG, Lanceros-Mendez S. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sens Actuators A. 2013;196:55.

    Article  CAS  Google Scholar 

  57. Mishra S, Unnikrishnan L, Nayak SK, Mohanty S. Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol Mater Eng. 2019;304:1800463.

    Article  Google Scholar 

  58. Ma W, Cross LE. Flexoelectricity of barium titanate. Appl Phys Lett. 2006;88: 232902.

    Article  Google Scholar 

  59. Gao J, Xue D, Liu W, Zhou C, Ren X. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators. 2017;6:24.

    Article  Google Scholar 

  60. Zhang Q, Cagin T, Goddard WA. The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric. Proc Natl Acad Sci U S A. 2006;103:14695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Potnis PR, Tsou N-T, Huber JE. A review of domain modelling and domain imaging techniques in ferroelectric crystals. Materials. 2011;4:417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti G Jr, Rödel J. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev. 2017;4: 041305.

    Article  Google Scholar 

  63. Yarin AL, Pourdeyhimi B, Ramakrishna S. Fundamentals and applications of micro- and nanofibers. Cambridge: Cambridge University Press; 2014.

    Book  Google Scholar 

  64. Tang C, Liu H. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos A. 2008;39:1638.

    Article  Google Scholar 

  65. An S, Liou M, Song KY, Jo HS, Lee MW, Al-Deyab SS, Yarin AL, Yoon SS. Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale. 2015;7:17778.

    Article  CAS  PubMed  Google Scholar 

  66. Lee HJ, An S, Hwang JH, Jung S-G, Jo HS, Kim KN, Shim YS, Park CH, Yoon SS, Park YW. Novel composite layer based on electrospun polymer nanofibers for efficient light scattering. ACS Appl Mater Interfaces. 2015;7:68.

    Article  CAS  PubMed  Google Scholar 

  67. An S, Jo HS, Kim YI, Song KY, Kim M-W, Lee KB, Yarin AL, Yoon SS. Bio-inspired, colorful, flexible, defrostable light-scattering hybrid films for the effective distribution of LED light. Nanoscale. 2017;9:9139.

    Article  CAS  PubMed  Google Scholar 

  68. Zubko P, Catalan G, Tagantsev AK. Flexoelectric effect in solids. Annu Rev Mater Res. 2013;43:387.

    Article  CAS  Google Scholar 

  69. Huang S, Kim T, Hou D, Cann D, Jones JL, Jiang X. Flexoelectric characterization of BaTiO3–0.08Bi(Zn1/2Ti1/2)O3. Appl Phys Lett. 2017;110:222904.

    Article  Google Scholar 

  70. Yudin P, Tagantsev A. Fundamentals of flexoelectricity in solids. Nanotechnology. 2013;24: 432001.

    Article  CAS  PubMed  Google Scholar 

  71. Xu T, Wang J, Shimada T, Kitamura T. Direct approach for flexoelectricity from first-principles calculations: cases for SrTiO3 and BaTiO3. J Phys Condens Matter. 2013;25:415901.

    Article  PubMed  Google Scholar 

  72. Catalan G, Sinnamon LJ, Gregg JM. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J Phys Condens Matter. 2004;16:2253.

    Article  CAS  Google Scholar 

  73. Cross LE. Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci. 2006;41:53.

    Article  CAS  Google Scholar 

  74. Chen N, Koker MKA, Uzun S, Silberstein MN. In-situ X-ray study of the deformation mechanisms of non-woven polypropylene. Int J Solids Struct. 2016;97–98:200.

    Article  Google Scholar 

  75. Xu H, Gao L, Guo J. Preparation and characterizations of tetragonal barium titanate powders by hydrothermal method. J Eur Ceram Soc. 2002;22:1163.

    Article  CAS  Google Scholar 

  76. Cui Y, Briscoe J, Dunn S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 influence on the carrier separation and stern layer formation. Chem Mater. 2013;25:4215.

    Article  CAS  Google Scholar 

  77. Meng N, Zhu X, Mao R, Reece MJ, Bilotti E. Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. J Mater Chem C. 2017;5:3296.

    Article  CAS  Google Scholar 

  78. Baji A, Mai Y-W, Li Q, Liu Y. Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers. Nanoscale. 2011;3:3068.

    Article  CAS  PubMed  Google Scholar 

  79. Soulestin T, Ladmiral V, Dos Santos FD, Ameduri B. Vinylidene fluoride-and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Prog Polym Sci. 2017;72:16.

    Article  CAS  Google Scholar 

  80. Dutta S, Buragohain P, Glinsek S, Richter C, Aramberri H, Lu H, Schroeder U, Defay E, Gruverman A, Íñiguez J. Piezoelectricity in hafnia. Nat Commun. 2021;12:7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Buragohain P, Lu H, Richter C, Schenk T, Kariuki P, Glinsek S, Funakubo H, Íñiguez J, Defay E, Schroeder U. Quantification of the Electromechanical Measurements by Piezoresponse Force Microscopy. Adv Mater. 2022;34:2206237.

    Article  CAS  Google Scholar 

  82. Tang C, Liu H. Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos A. 2008;39:1638.

    Article  Google Scholar 

  83. Sato H, Iba H, Naganuma T, Kagawa Y. Effects of the difference between the refractive indices of constituent materials on the light transmittance of glass-particle-dispersed epoxy-matrix optical composites. Philos Mag B. 2002;82:1369.

    Article  CAS  Google Scholar 

  84. Motakef S, Suratwala T, Roncome R, Boulton J, Teowee G, Uhlmann D. Processing and optical properties of inorganic-organic hybrids (polycerams). II. PDMS-based waveguides. J Non-Cryst Solids. 1994;178:37.

    Article  CAS  Google Scholar 

  85. Bai M. The structure of ferroelectric polyvinylidene fluoride/trifluoroethylene (PVDF/TrFE) copolymer Langmuir-Blodgett films. Lincoln: The University of Nebraska-Lincoln; 2002.

    Google Scholar 

  86. Karvounis A, Timpu F, Vogler-Neuling VV, Savo R, Grange R. Barium titanate nanostructures and thin films for photonics. Adv Opt Mater. 2020;8:2001249.

    Article  CAS  Google Scholar 

  87. Wang M, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials. 2001;22:1311.

    Article  CAS  PubMed  Google Scholar 

  88. Ye H, Lam H, Titchenal N, Gogotsi Y, Ko F. Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers. Appl Phys Lett. 2004;85:1775.

    Article  CAS  Google Scholar 

  89. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B. 2011;42:856.

    Article  Google Scholar 

  90. Tian M, Gao Y, Liu Y, Liao Y, Xu R, Hedin NE, Fong H. Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer. 2007;48:2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shashoua VE. Static electricity in polymers. I. Theory and measurement. J Polym Sci. 1958;33:65.

    Article  CAS  Google Scholar 

  92. Horn RG, Smith DT. Contact electrification and adhesion between dissimilar materials. Science. 1992;256:362.

    Article  CAS  PubMed  Google Scholar 

  93. Wu C, Wang AC, Ding W, Guo H, Wang ZL. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater. 2019;9:1802906.

    Article  Google Scholar 

  94. Yang X, Daoud WA. Triboelectric and piezoelectric effects in a combined tribo-piezoelectric nanogenerator based on an interfacial ZnO nanostructure. Adv Funct Mater. 2016;26:8194.

    Article  CAS  Google Scholar 

  95. Wang X, Yang B, Liu J, Yang C. A transparent and biocompatible single-friction-surface triboelectric and piezoelectric generator and body movement sensor. J Mater Chem A. 2017;5:1176.

    Article  CAS  Google Scholar 

  96. Ma M, Zhang Z, Zhao Z, Liao Q, Kang Z, Gao F, Zhao X, Zhang Y. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy. 2019;66: 104105.

    Article  CAS  Google Scholar 

  97. Huang T, Zhang Y, He P, Wang G, Xia X, Ding G, Tao TH. “Self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly(vinylidene fluoride) and recombinant spider silk. Adv Mater. 2020;32:1907336.

    Article  CAS  Google Scholar 

  98. Shawon SMAZ, Sun AX, Vega VS, Chowdhury BD, Tran P, Carballo ZD, Tolentino JA, Li J, Rafaqut MS, Danti S. Piezo-tribo dual effect hybrid nanogenerators for health monitoring. Nano Energy. 2021;82: 105691.

    Article  CAS  Google Scholar 

  99. Do YH, Jung WS, Kang MG, Kang CY, Yoon SJ. Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process. Sens Actuators A. 2013;200:51.

    Article  CAS  Google Scholar 

  100. Fuh YK, Kuo CC, Huang ZM, Li SC, Liu ER. A transparent and flexible graphene-piezoelectric fiber generator. Small. 1875;2016:12.

    Google Scholar 

  101. Hu C, Cheng L, Wang Z, Zheng Y, Bai S, Qin Y. A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen. Small. 2016;12:1315.

    Article  CAS  PubMed  Google Scholar 

  102. Kim K, Ha M, Choi B, Joo SH, Kang HS, Park JH, Gu B, Park C, Park C, Kim J. Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy. 2018;48:275.

    Article  CAS  Google Scholar 

  103. Shepelin NA, Lussini VC, Fox PJ, Dicinoski GW, Glushenkov AM, Shapter JG, Ellis AV. 3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Commun. 2019;9:159.

    Article  CAS  Google Scholar 

  104. Shepelin NA, Sherrell PC, Goudeli E, Skountzos EN, Lussini VC, Dicinoski GW, Shapter JG, Ellis AV. Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating. Energy Environ Sci. 2020;13:868.

    Article  CAS  Google Scholar 

  105. Yu X, Liang X, Krishnamoorthy R, Jiang W, Zhang L, Ma L, Zhu P, Hu Y, Sun R, Wong C-P. Transparent and flexible hybrid nanogenerator with welded silver nanowire networks as the electrodes for mechanical energy harvesting and physiological signal monitoring. Smart Mater Struct. 2020;29: 045040.

    Article  CAS  Google Scholar 

  106. Ng KE, Ooi PC, Haniff MASM, Goh BT, Dee CF, Chang WS, Wee MMR, Mohamed MA. Performance of all-solution-processed, durable 2D MoS2 flakes− BaTiO3 nanoparticles in polyvinylidene fluoride matrix nanogenerator devices using N-methyl-2-pyrrolidone polar solvent. J Alloys Compd. 2020;820: 153160.

    Article  CAS  Google Scholar 

  107. Eom K, Na S, Kim J-K, Ko H, Jin J, Kang SJ. Engineering crystal phase of Nylon-11 films for ferroelectric device and piezoelectric sensor. Nano Energy. 2021;88: 106244.

    Article  CAS  Google Scholar 

  108. Rodrigues-Marinho T, Pereira N, Correia V, Miranda D, Lanceros-Méndez S, Costa P. Transparent piezoelectric polymer-based materials for energy harvesting and multitouch detection devices. ACS Appl Electron Mater. 2021;4:287.

    Article  Google Scholar 

  109. Kim K, Lee S, Nam JS, Joo M, Mikladal B, Zhang Q, Kauppinen EI, Jeon I, An S. Highly transparent and mechanically robust energy-harvestable piezocomposite with embedded 1D P(VDF-TrFE) nanofibers and single-walled carbon nanotubes. Adv Funct Mater. 2023;33:2213374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MIST) (RS-2023-00211303) and Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (P0023521, HRD Program for Industrial Innovation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sam S. Yoon, Junki Kim or Seongpil An.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4967 kb)

Supplementary file2 (MP4 3916 kb)

Supplementary file3 (MP4 14069 kb)

Supplementary file4 (MP4 1069 kb)

Supplementary file5 (MP4 29547 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Choi, D., Ji, S. et al. Highly Transparent and Flexible All-Nanofiber-Based Piezocomposite Containing BaTiO3-Embedded P(VDF-TrFE) Nanofibers for Harvesting and Monitoring Human Kinetic Movements. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00406-8

Keywords

Navigation