Skip to main content
Log in

Washable and Multifunctional Electronic Textiles Via In Situ Lamination for Personal Health Care

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Limitations of current electronic textiles (e-textiles), including poor washability, instability, and inferior sensing capability, are concerns hindering their broad and practical applications in personal health care management, virtual games, sports, and more. Here, we report an RGO/PANI e-textile via alternative coatings of in situ reduced graphene oxides (RGO) and in situ polymerized polyaniline (PANI), establishing a laminated structure on a knitted textile substrate. As a result of an in situ lamination strategy, our e-textile exhibits excellent breathability (1428 mm s−1, greater than that of bare cotton fabric) and outstanding sensitivity (gage factor of 39.7) over a wide strain range (~ 0.0625–200%). Importantly, we observed exceptional sensing durability even after severe mechanical disturbance of stretching, bending, or twisting (> 1500 cycles) and daily machine washes. Detailed analysis revealed that our proposed in situ lamination approach enabled the physical and chemical interactions between sensing active materials and the textile substrate. Furthermore, the electromechanical behavior of our RGO/PANI e-textile was thoroughly analyzed based on an equivalent electrical circuit, which agreed well with the experimental data. Example applications of the e-textile were demonstrated for personal health care management, including body motion monitoring, emotional sensing, and flatfoot gait correction. The RGO/PANI e-textile presented in this study holds significant implications for the evolution of health care applications utilizing smart e-textiles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lu D, Chu Y, Liao S, Li W, Cai Y, Wei Q, Wang Q. Highly sensitive fabric strain sensor with double-layer conductive networks for joint rehabilitation therapy. Compos Sci Technol. 2022;230:2.

    Article  Google Scholar 

  2. Zhang S, Zhou Y, Libanori A, Deng Y, Liu M, Zhou M, Qu H, Zhao X, Zheng P, Zhu Y-L, Chen J, Tan SC. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat Electron. 2023;6:338–48.

    Article  Google Scholar 

  3. Li H, Tang R, Dai J, Wang Z, Meng S, Zhang X, Cheng F. Recent progress in flax fiber-based functional composites. Adv Fiber Mater. 2022;4:171–84.

    Article  CAS  Google Scholar 

  4. Wong TH, Liu Y, Li J, Yao K, Liu S, Yiu CK, Huang X, Wu M, Park W, Zhou J, Nejad SK, Li H, Li D, Xie Z, Yu X. Triboelectric nanogenerator tattoos enabled by epidermal electronic technologies. Adv Funct Mater. 2021;32:2111269.

    Article  Google Scholar 

  5. Wei Y, Li X, Wang Y, Hirtz T, Guo Z, Qiao Y, Cui T, Tian H, Yang Y, Ren TL. Graphene-based multifunctional textile for sensing and actuating. ACS Nano. 2021;15:17738–47.

    Article  CAS  PubMed  Google Scholar 

  6. Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H. From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators. Nano Energy. 2021;89:106487.

    Article  CAS  Google Scholar 

  7. Lim HR, Kim HS, Raza Q, Kwon YT, Jeong JW, Yeo WH. Wearable flexible hybrid electronics: advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater. 2020;32:2070116.

    Article  Google Scholar 

  8. Yang T, Jiang X, Zhong Y, Zhao X, Lin S, Li J, Li X, Xu J, Li Z, Zhu H. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS sensors. 2017;2:967–74.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Zhang D, Zhang B, Wang D, Tang M. Wearable pressure sensor array with layer-by-layer assembled mxene nanosheets/Ag nanoflowers for motion monitoring and human-machine interfaces. ACS Appl Mater Interfaces. 2022;14:48907–16.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Ji S, Sun J, Huang J, Li Y, Zou G, Salim T, Wang C, Li W, Jin H, Xu J, Wang S, Lei T, Yan X, Peh WYX, Yen SC, Liu Z, Yu M, Zhao H, Lu Z, Li G, Gao H, Liu Z, Bao Z, Chen X. A universal interface for plug-and-play assembly of stretchable devices. Nature. 2023;614:456–62.

    Article  CAS  PubMed  Google Scholar 

  11. Choi H, Sun J, Ren B, Cha S, Lee J, Lee BM, Park JJ, Choi JH, Park JJ. 3D textile structure-induced local strain for a highly amplified piezoresistive performance of carbonized cellulose fabric based pressure sensor for human healthcare monitoring. Chem Eng J. 2022;450:138193.

    Article  CAS  Google Scholar 

  12. Wang X, Sun X, Gan D, Soubrier M, Chiang H-Y, Yan L, Li Y, Li J, Yu S, Xia Y, Wang K, Qin Q, Jiang X, Han L, Pan T, Xie C, Lu X. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter. 2022;5:1204–23.

    Article  CAS  Google Scholar 

  13. Zhang S, Deng Y, Libanori A, Zhou Y, Yang J, Tat T, Yang L, Sun W, Zheng P, Zhu YL, Chen J, Tan SC. In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv Mater. 2023;35:2207916.

    Article  CAS  Google Scholar 

  14. Zhang J, Zhang Y, Li Y, Ye X, Wang P, Xu Y. Fabrication of a conductive poly(3,4-ethylenedioxythiophene)-coated polyester nonwoven fabric and its application in flexible piezoresistive pressure sensors. ACS Appl Mater Interfaces. 2021;3:3177–84.

    CAS  Google Scholar 

  15. Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang X, Razal JM. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horizons. 2019;6:219–49.

    Article  CAS  Google Scholar 

  16. Irfan MS, Khan T, Hussain T, Liao K, Umer R. Carbon coated piezoresistive fiber sensors: from process monitoring to structural health monitoring of composites—a review. Compos A. 2021;141:106236.

    Article  CAS  Google Scholar 

  17. Qin Y, Qu M, Pan Y, Zhang C, Schubert DW. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos A. 2020;129:105724.

    Article  CAS  Google Scholar 

  18. Tam TV, Hur SH, Chung JS, Choi WM. Novel paper- and fiber optic-based fluorescent sensor for glucose detection using aniline-functionalized graphene quantum dots. Sens Actuator B-Chem. 2021;329:129250.

    Article  CAS  Google Scholar 

  19. Li S, Li R, González OG, Chen T, Xiao X. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection. Compos Sci Technol. 2021;203:108617.

    Article  CAS  Google Scholar 

  20. Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized fiber-based strain sensors: Pathway to next-generation wearable electronics. Nano-Micro Lett. 2022;14:16.

    Article  Google Scholar 

  21. Wu R, Seo S, Ma LY, Bae J, Kim T. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 2022;14:139.

    Article  Google Scholar 

  22. Xue R, Zhou N, Yin S, Qian Z, Dai Z, Xiong Y. All-polymer dynamical ionogel-like materials with benzyl-mediated ultra-strong adhesion for flexible sensor application. Chem Eng J. 2023;465:143072.

    Article  CAS  Google Scholar 

  23. Zan G, Wu T, Dong W, Zhou J, Tu T, Xu R, Chen Y, Wang Y, Wu Q. Two-level biomimetic designs enable intelligent stress dispersion for super-foldable C/NiS nanofiber free-standing electrode. Adv Fiber Mater. 2022;4:1177–90.

    Article  CAS  Google Scholar 

  24. Zeng F, Zheng Y, Wei Y, Li H, Wang Q, Shi J, Wang Y, Hong X. Multifunctional silver nanowire fabric reinforced by hot pressing for electromagnetic interference shielding, electric heating, and sensing. Polymers. 2023;15:4258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen J, Zhang J, Hu J, Luo N, Sun F, Venkatesan H, Zhao N, Zhang Y. Ultrafast-response/recovery flexible piezoresistive sensors with DNA-Like double helix yarns for epidermal pulse monitoring. Adv Mater. 2021;34:2104313.

    Article  Google Scholar 

  26. Zhang S, Zhou M, Liu M, Guo ZH, Qu H, Chen W, Tan SC. Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation. Nat Commun. 2023;14:3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano. 2020;14:2145–55.

    Article  CAS  PubMed  Google Scholar 

  28. Lu B, Tian M, Sun X, Pan N, Chen F, Zhu S, Zhang X, Chen S. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos A. 2019;117:202–10.

    Article  CAS  Google Scholar 

  29. Chen L, Li R, Yuan S, Chen A, Li Y, Zhang T, Wei L, Zhang Q, Li Q. Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter. 2023;6:925–39.

    Article  CAS  Google Scholar 

  30. Lu D, Liao S, Chu Y, Cai Y, Wei Q, Chen K, Wang Q. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater. 2022;5:223–34.

    Article  Google Scholar 

  31. Bai X, Huo H, Lu P, Luan Y, Koga A, Liu J. Analysis of plantar impact characteristics of walking in patients with flatfoot according to basic mechanical features and continuous wavelet transform. Front Phys. 2022;10:58615.

    Article  Google Scholar 

  32. Cheng K, Peng Y, Chen TL, Zhang G, Cheung JC, Lam W, Wong DW, Zhang M. A three-dimensional printed foot orthosis for flexible flatfoot: an exploratory biomechanical study on arch support reinforcement and undercut. Materials. 2021;14:5297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho M, Chong L, Kong V, Lam G. The effects of foot orthosis on ground reaction force and comfort in flat-footed individuals during sprints. J Sci Med Sport. 2018;21:68.

    Article  Google Scholar 

  34. Liu Z, Zheng Y, Jin L, Chen K, Zhai H, Huang Q, Chen Z, Yi Y, Umar M, Xu L, Li G, Song Q, Yue P, Li Y, Zheng Z. Highly breathable and stretchable strain sensors with insensitive response to pressure and bending. Adv Funct Mater. 2021;31:2007622.

    Article  CAS  Google Scholar 

  35. Zhang S, Liu M, Guo S, Tieu AJK, Yang J, Adams S, Tan SC. Strong, compressible, and ultrafast self-recovery organogel with in situ electrical conductivity improvement. Adv Funct Mater. 2023;33:2209129.

    Article  CAS  Google Scholar 

  36. Wang S, Fang Y, He H, Zhang L, Ca Li, Ouyang J. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv Funct Mater. 2021;31:2007495.

    Article  CAS  Google Scholar 

  37. Sun S, Liu Y, Chang X, Jiang Y, Wang D, Tang C, He S, Wang M, Guo L, Gao Y. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. J Mater Chem C. 2020;8:2074–85.

    Article  CAS  Google Scholar 

  38. Xue S, Tang Z, Zhu W, Li Y, Huang P, Fu S. Stretchable and ultrasensitive strain sensor from carbon nanotube-based composite with significantly enhanced electrical and sensing properties by tailoring segregated conductive networks. Compos Commun. 2022;29:100987.

    Article  Google Scholar 

  39. Xu Y, Xie X, Huang H, Wang Y, Yu J, Hu Z. Encapsulated core-sheath carbon nanotube-graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J Mater Sci. 2021;56:2296–310.

    Article  CAS  Google Scholar 

  40. Zhang J, Liu J, Zhao Z, Sun W, Zhao G, Liu J, Xu J, Li Y, Liu Z, Li Y, Li G. Calotropis gigantea fiber-based sensitivity-tunable strain sensors with insensitive response to wearable microclimate changes. Adv Fiber Mater. 2023;5:1378–91.

    Article  CAS  Google Scholar 

  41. Liu Z, Chen K, Fernando A, Gao Y, Li G, Jin L, Zhai H, Yi Y, Xu L, Zheng Y, Li H, Fan Y, Li Y, Zheng Z. Permeable graphited hemp fabrics-based, wearing-comfortable pressure sensors for monitoring human activities. Chem Eng J. 2021;403:126191.

    Article  CAS  Google Scholar 

  42. Yi Y, Yu C, Zhai H, Jin L, Cheng D, Lu Y, Chen Z, Xu L, Li J, Song Q, Yue P, Liu Z, Li Y. A free-standing humidity sensor with high sensing reliability for environmental and wearable detection. Nano Energy. 2022;103:107780.

    Article  CAS  Google Scholar 

  43. Liu Z, Li Z, Zhai H, Jin L, Chen K, Yi Y, Gao Y, Xu L, Zheng Y, Yao S, Liu Z, Li G, Song Q, Yue P, Xie S, Li Y, Zheng Z. A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chem Eng J. 2021;426:130869.

    Article  CAS  Google Scholar 

  44. Gandla S, Naqi M, Lee M, Lee JJ, Won Y, Pujar P, Kim J, Lee S, Kim S. Highly linear and stable flexible temperature sensors based on laser-induced carbonization of polyimide substrates for personal mobile monitoring. Adv Mater Technol. 2020;5:2000014.

    Article  CAS  Google Scholar 

  45. Liu Z, Li Z, Yi Y, Li L, Zhai H, Lu Z, Jin L, Lu JR, Xie SQ, Zheng Z, Li Y, Li J. Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy. 2022;99:107444.

    Article  CAS  Google Scholar 

  46. William S, Hummers J, Richard E. Offeman. Preparation of graphitic oxide. J Am Chem Soc. 2002;80:2.

    Google Scholar 

  47. Hong X, Yu W, Wang A, Chung DDL. Graphite oxide paper as a polarizable electrical conductor in the through-thickness direction. Carbon. 2016;109:874–82.

    Article  CAS  Google Scholar 

  48. Shuai J, Xiong L, Zhu L, Li W. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite. Compos A. 2016;88:148–55.

    Article  CAS  Google Scholar 

  49. Zhu M, Shi Q, He T, Yi Z, Ma Y, Yang B, Chen T, Lee C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano. 2019;13:1940–52.

    CAS  PubMed  Google Scholar 

  50. Geim Andre K, Konstantin Novoselov S. The rise of graphene. Nat Mater. 2007;6:183–91.

    Article  Google Scholar 

  51. Shadpour M, Amir A, Sedigheh B. Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl Surf Sci. 2014;307:533–42.

    Article  Google Scholar 

  52. Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Moghadam MHM. Characterization of covalently-grafted polyisocyanate chains onto graphene oxide for polyurethane composites with improved mechanical properties. Chem Eng J. 2015;281:869–83.

    Article  CAS  Google Scholar 

  53. Yao F, Xie W, Yang M, Zhang H, Gu H, Du A, Naik N, Young DP, Lin J, Guo Z. Interfacial polymerized copolymers of aniline and phenylenediamine with tunable magnetoresistance and negative permittivity. Mater Today Phys. 2021;21:100502.

    Article  CAS  Google Scholar 

  54. Wei C, Cheng R, Ning C, Wei X, Peng X, Lv T, Sheng F, Dong K, Wang ZL. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv Funct Mater. 2023;33:2303562.

    Article  CAS  Google Scholar 

  55. Ahmad AL, Farooqui UR, Hamid NA. Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim Acta. 2018;283:842–9.

    Article  CAS  Google Scholar 

  56. Hou Z, Zou S, Li J. Morphology and structure control of amine- functionalized graphene/polyaniline composite for high-performance supercapacitors. J Alloy Compd. 2020;827:154390.

    Article  CAS  Google Scholar 

  57. Lin R, Fan Y, Xie Y, Ge D, Liang S, Guan H, Chen M, Zhang Y, Xing L, Xue X, Zhan Y. A self-powered wearable seizure-monitoring/brain-stimulating system for potential epilepsy treatment. Nano Energy. 2023;107:108121.

    Article  CAS  Google Scholar 

  58. Yang Z, Pang Y, Han X, Yang Y, Ling J, Jian M, Zhang Y, Yang Y, Ren T. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano. 2018;12:9134–41.

    Article  CAS  PubMed  Google Scholar 

  59. Fu X, Li L, Chen S, Xu H, Li J, Shulga V, Han W. Knitted Ti3C2Tx MXene based fiber strain sensor for human–computer interaction. J Colloid Interface Sci. 2021;604:643–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu T, Jiang W, Shi X, Sun D, Yang J, Qi X, Wang Y. MXene/Ag doped hydrated-salt hydrogels with excellent thermal/light energy storage, strain sensing and photothermal antibacterial performances for intelligent human healthcare. Compos A. 2023;170:107526.

    Article  CAS  Google Scholar 

  61. Fang H, Yao D, Gao X, Sun Y, Shiwei A, Lu M, Lu C. Flexible sensors with tannin-modified vertical graphene arrays for the highly sensitive detection of humidity and strain. Sens Actuat A-Phys. 2023;352:114213.

    Article  CAS  Google Scholar 

  62. Peng J, Wang B, Cheng H, Yang R, Yin Y, Xu S, Wang C. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/Polypyrrole composite conductive networks for body movement monitoring. Compos Sci Technol. 2022;227:109561.

    Article  CAS  Google Scholar 

  63. Park S, Choi H, Cho Y, Jeong J, Sun J, Cha S, Choi M, Bae J, Park J. Wearable strain sensors with aligned macro carbon cracks using a two-dimensional triaxial-braided fabric structure for monitoring human health. ACS Appl Mater Interfaces. 2021;13:22926–34.

    Article  CAS  PubMed  Google Scholar 

  64. Sun J, Choi H, Cha S, Ahn D, Choi M, Park S, Cho Y, Lee J, Park T, Park J. Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system. Adv Funct Mater. 2021;32:2109139.

    Article  Google Scholar 

  65. Ye J, Deng D, Wang Y, Luo L, Qian K, Cao S, Feng X. Well-aligned Cu@C nanocubes for highly efficient nonenzymatic glucose detection in human serum. Sens Actuat B-Chem. 2020;305:127473.

    Article  CAS  Google Scholar 

  66. Zheng X, Zhang S, Zhou M, Lu H, Guo S, Zhang Y, Li C, Tan SC. MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv Funct Mater. 2023;33:2214880.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.H. and S.W. contributed equally to this work. This research was supported by the Public Welfare Project of Zhejiang Province (LGF21E030005), the National Natural Science Foundation of China (NSFC 51803185), the Fundamental Research Funds of Zhejiang Sci-Tech University (22202301-Y), the Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province (QJRZ2214), and the China Scholarships Council for the overseas scholarship (202008330177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songlin Zhang, Dongsheng Mao, Chaobin He or Swee Ching Tan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1963 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Sun, W., Zhang, S. et al. Washable and Multifunctional Electronic Textiles Via In Situ Lamination for Personal Health Care. Adv. Fiber Mater. 6, 458–472 (2024). https://doi.org/10.1007/s42765-023-00368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00368-3

Keywords

Navigation