Skip to main content
Log in

Metal–Organic Framework-Derived Hierarchical Cu9S5/C Nanocomposite Fibers for Enhanced Electromagnetic Wave Absorption

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Refining the electromagnetic wave absorption characteristics of traditional metal–organic framework (MOF)-derived carbon composites remains a challenge because of their discontinuous conductive path. To overcome this limitation, in this work, MOF-derived hierarchical Cu9S5/C nanocomposite fibers are fabricated by electrospinning and subsequent carbonization-sulfurization process. Morphological analyses show that MOF-derived octahedral Cu9S5/C particles are evenly monodispersed inside carbonaceous fibers. This configuration creates a unique hierarchical structure, ranging from Cu9S5 particle embedding, MOF-derived skeleton, to a three-dimensional network. The optimized composite fibers (Cu9S5/C-40) exhibit extraordinary electromagnetic wave absorption performance at a low mass fraction (20 wt%): the minimum reflection loss value reaches − 69.6 dB, and the maximum effective absorption bandwidth achieves 5.81 GHz with an extremely thin thickness of only 1.83 mm. Systematic investigations demonstrate that constructing the three-dimensional conductive network to connect MOF derivatives is crucial for activating performance enhancement. The unique nano-micro hierarchical structure synergized with elaborate-configured components endows the materials with optimal impedance matching and amplifies the loss capacity of each part. This work provides a reliable example and theoretical guidance for fabricating new-generation high-efficiency MOF-derived fibrous electromagnetic wave absorbers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data substantiating the findings of this study can be accessed from the corresponding author upon a reasonable request.

References

  1. Lv HL, Yang ZH, Pan HG, Wu RB. Electromagnetic absorption materials: current progress and new frontiers. Prog Mater Sci. 2022;127: 100946.

    Article  CAS  Google Scholar 

  2. Wu Y, Tan SJ, Zhao Y, Liang LL, Zhou M, Ji GB. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci. 2023;135: 101088.

    Article  Google Scholar 

  3. Qin M, Zhang LM, Wu HJ. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci. 2022;9:2105553.

    Article  CAS  Google Scholar 

  4. Pan YL, Zhu QQ, Zhu JH, Cheng YH, Yu BY, Jia ZR, Wu GL. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023;16(7):10666–77.

    Article  CAS  Google Scholar 

  5. Jia ZR, Lan D, Chang M, Han Y, Wu GL. Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers. Mater Today Phys. 2023;37: 101215.

    Article  CAS  Google Scholar 

  6. Zhang X, Qiao J, Jiang YY, Wang FL, Tian XL, Wang Z, Wu LL, Liu W, Liu JR. Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021;13:135.

    Article  CAS  Google Scholar 

  7. Wu YL, Lan D, Ren JW, Zhang SJ. A mini review of MOFs derived multifunctional absorbents: from perspective of components regulation. Mater Today Phys. 2023;36: 101178.

    Article  CAS  Google Scholar 

  8. Li JJ, Zhu QQ, Zhu JH, Cheng YH, Jia ZR, Lu F, Wang C, Wu GL. Inimitable 3D pyrolytic branched hollow architecture with multi-scale conductive network for microwave absorption. J Mater Sci Technol. 2024;173:170–80.

    Article  Google Scholar 

  9. Yang YF, Xu DM, Lyu LF, Wang FL, Wang Z, Wu LL, Liu W, Liu JR. Synthesis of MOF-derived Fe7S8/C rod-like composites by controlled proportion of carbon for highly efficient electromagnetic wave absorption. Compos Part A Appl Sci Manuf. 2021;142: 106246.

    Article  CAS  Google Scholar 

  10. Xu DM, Yang YF, Le K, Wang GW, Ouyang AC, Li B, Liu W, Wu LL, Wang Z, Liu JR, Wang FL. Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem Eng J. 2021;417: 129350.

    Article  CAS  Google Scholar 

  11. Ren SN, Yu HJ, Wang L, Huang ZK, Lin TF, Huang YD, Yang J, Hong YC, Liu JY. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022;14:68.

    Article  CAS  Google Scholar 

  12. Gao ZG, Iqbal A, Hassan T, Zhang LM, Wu HJ, Koo CM. Texture regulation of metal–organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv Sci. 2022;9:2204151.

    Article  CAS  Google Scholar 

  13. Zhang X, Qiao J, Liu C, Wang FL, Jiang YY, Cui P, Wang Q, Wang Z, Wu LL, Liu JR. A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg Chem Front. 2020;7:385–93.

    Article  CAS  Google Scholar 

  14. Zhang X, Tian XL, Liu C, Qiao J, Liu W, Liu JR, Zeng ZH. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon. 2022;149:257–66.

    Article  Google Scholar 

  15. Liu Y, Zeng ZH, Zheng SN, Qiao J, Liu W, Wu LL, Liu JR. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Compos B Eng. 2022;235: 109800.

    Article  CAS  Google Scholar 

  16. Zhang F, Jia ZR, Zhou JX, Liu JK, Wu GL, Yin PF. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem Eng J. 2022;450: 138205.

    Article  CAS  Google Scholar 

  17. Shu RW, Li XH, Ge CQ, Wang LY. Synthesis of FeCoNi/C decorated graphene composites derived from trimetallic metal-organic framework as ultrathin and high-performance electromagnetic wave absorbers. J Colloid Interface Sci. 2023;630:754–62.

    Article  CAS  PubMed  Google Scholar 

  18. Jia ZR, Kong MY, Yu BW, Ma YZ, Pan JY, Wu GL. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J mater sci technol. 2022;127:153–63.

    Article  CAS  Google Scholar 

  19. Yang BT, Fang JF, Xu CY, Cao H, Zhang RX, Zhao B, Huang MQ, Wang XY, Lv HL, Che RC. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022;14:170.

    Article  CAS  Google Scholar 

  20. Qiao J, Zhang X, Xu DM, Kong LX, Lv LF, Yang F, Wang FL, Liu W, Liu JR. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem Eng J. 2020;380: 122591.

    Article  CAS  Google Scholar 

  21. Ma ML, Liao ZJ, Su XW, Zheng QX, Liu YY, Wang Y, Ma Y, Wan F. Magnetic CoNi alloy particles embedded N-doped carbonaceous fibers with polypyrrole for excellent electromagnetic wave absorption. J Colloid Interface Sci. 2022;608:2203–12.

    Article  CAS  PubMed  Google Scholar 

  22. Wang CX, Liu Y, Jia ZR, Zhao WR, Wu GL. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2023;15:13.

    Article  Google Scholar 

  23. Zhang S, Liu XH, Jia CY, Sun ZS, Jiang HW, Jia ZR, Wu GL. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 2023;15:204.

    Article  Google Scholar 

  24. Wu SM, Qiao J, Tang YX, Zhang X, Meng XW, Hao SY, Tian HY, Li BD, Zuo XY, Liu JR, Wu LL, Wang Z, Wang FL. Heterogeneous Cu9S5/C nanocomposite fibers with adjustable electromagnetic parameters for efficient electromagnetic absorption. J Colloid Interface Sci. 2023;630:47–56.

    Article  CAS  PubMed  Google Scholar 

  25. Guo RD, Su D, Chen F, Cheng YZ, Wang X, Gong RZ, Luo H. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption. ACS Appl Mater Interfaces. 2022;14:3084–94.

    Article  CAS  PubMed  Google Scholar 

  26. Chen JB, Zheng J, Wang F, Huang QQ, Ji GB. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon. 2021;174:509–17.

    Article  CAS  Google Scholar 

  27. Sun RL, Yan GL, Zhang XL, Li ZY, Chen JY, Wang L, Wu YP, Wang YQ, Li H. Fe-ZIF-derived hollow porous carbon nanofibers for electromagnetic wave absorption. Chem Eng J. 2023;455: 140608.

    Article  CAS  Google Scholar 

  28. Yu WJ, Shao GF. Morphology engineering of defective graphene for microwave absorption. J Colloid Interface Sci. 2023;640:680–7.

    Article  CAS  PubMed  Google Scholar 

  29. Lai QX, Zhao YX, Liang YY, He JP, Chen JH. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv Funct Mater. 2016;26:8334–44.

    Article  CAS  Google Scholar 

  30. Rao LJ, Wang L, Yang CD, Zhang RX, Zhang JC, Liang CY, Che RC. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv Funct Mater. 2023;33:2213258.

    Article  CAS  Google Scholar 

  31. Xu HY, Li B, Jiang XY, Shi YN, Zhang X, Zhu CL, Zhang XT, Chen YJ. Fabrication of N−doped carbon nanotube/carbon fiber dendritic composites with abundant interfaces for electromagnetic wave absorption. Carbon. 2023;201:234–43.

    Article  CAS  Google Scholar 

  32. Wang L, Li X, Li QQ, Yu XF, Zhao YH, Zhang J, Wang M, Che RC. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small. 2019;15:1900900.

    Article  Google Scholar 

  33. Liang HS, Chen G, Liu D, Li ZJ, Hui SC, Yun JJ, Zhang LM, Wu HJ. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv Funct Mater. 2023;33:2212604.

    Article  CAS  Google Scholar 

  34. Liu JL, Zhang LM, Zang DY, Wu HJ. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv Funct Mater. 2021;31:2105018.

    Article  CAS  Google Scholar 

  35. Chen G, Liang HS, Yun JJ, Zhang LM, Wu HJ, Wang JY. Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber. Adv Mater. 2023. https://doi.org/10.1002/adma.202305586.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang HS, Zhang LM, Wu HJ. Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small. 2022;18:2203620.

    Article  CAS  Google Scholar 

  37. Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126–30.

    Article  CAS  Google Scholar 

  38. Nemanich RJ, Solin SA. First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B. 1979;20:392–401.

    Article  CAS  Google Scholar 

  39. Liu PB, Gao S, Wang Y, Huang Y, He WJ, Huang WH, Luo JH. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem Eng J. 2020;381: 122653.

    Article  CAS  Google Scholar 

  40. Zhang Y, Huang YY, Srot V, Aken PAV, Maier J, Yu Y. Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. 2020;12:165.

    Article  Google Scholar 

  41. Shi YN, Li B, Jiang XY, Zhang X, Zhang XT, Chen YJ, Zhu CL. The enhanced dielectric property of the graphene composite anchored with non-planar iron single-atoms. Appl Phys Lett. 2022;121: 073102.

    Article  CAS  Google Scholar 

  42. Li B, Xu J, Xu HY, Yan F, Zhang X, Zhu CL, Zhang XT, Chen YJ. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption. Chem Eng J. 2022;435: 134846.

    Article  CAS  Google Scholar 

  43. Zhang XC, Shi YN, Xu J, Ouyang QY, Zhang X, Zhu CL, Zhang XL, Chen YJ. Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 2022;14:27.

    Article  CAS  Google Scholar 

  44. Xu J, Liu LN, Zhang XC, Li B, Zhu CL, Chou SL, Chen YJ. Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chem Eng J. 2021;425: 131700.

    Article  CAS  Google Scholar 

  45. Xing XL, Liu RJ, Anjass M, Cao KC, Kaiser U, Zhang GJ, Streb C. Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl Catal B. 2020;277: 119195.

    Article  CAS  Google Scholar 

  46. Zhi DD, Li T, Qi ZH, Li JZ, Tian YR, Deng WT, Meng FB. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem Eng J. 2022;433: 134496.

    Article  CAS  Google Scholar 

  47. Yusuf M, Hira SA, Park KH. Light-harvesting novel hierarchical porous Cu9S5–MnWO4 hybrid structures in photocatalytic oxidative homocoupling of alkynes and amines. ACS Appl Mater Interfaces. 2022;14:15529–40.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Fang YJ, Zhao ZW, Yuan CZ, Lou XW. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv Energy Mater. 2019;9:1803052.

    Article  Google Scholar 

  49. Yang SS, Wang YW, Zhang HJ, Zhang Y, Liu L, Fang L, Yang XH, Gu X, Wang Y. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. J Catal. 2019;371:20–6.

    Article  CAS  Google Scholar 

  50. Feng XT, Jiao QZ, Li Q, Shi Q, Dai Z, Zhao Y, Li HS, Feng CH, Zhou W, Feng TY. NiCo2S4 spheres grown on N, S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts. Electrochim Acta. 2020;331: 135356.

    Article  CAS  Google Scholar 

  51. Qiao J, Zhang X, Liu C, Zeng ZH, Yang YF, Wu LL, Wang FL, Wang Z, Liu W, Liu JR. Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption. Carbon. 2022;191:525–34.

    Article  CAS  Google Scholar 

  52. Chen WX, Xing HL, Gao ST, Yang P, Ji XL. Bi-semiconductor heterojunction Cu9S5@VO2 microspheres with morphology regulation as broadband high-performance electromagnetic wave absorber. Appl Surf Sci. 2023;610: 155539.

    Article  CAS  Google Scholar 

  53. Tao FJ, Green M, Tran ATV, Zhang YL, Yin YS, Chen XB. Plasmonic Cu9S5 nanonets for microwave absorption. ACS Appl Nano Mater. 2019;2:3836–47.

    Article  CAS  Google Scholar 

  54. Liao J, Ye MQ, Han AJ, Guo JM, Chen CL. Nanosheet architecture of Cu9S5 loaded with Fe3O4 microspheres for efficient electromagnetic wave absorption. Ceram Int. 2021;47:8803–11.

    Article  CAS  Google Scholar 

  55. Liao J, Ye MQ, Han AJ, Guo JM, Liu QZ, Yu GQ. Boosted electromagnetic wave absorption performance from multiple loss mechanisms in flower-like Cu9S5/RGO composites. Carbon. 2021;177:115–27.

    Article  CAS  Google Scholar 

  56. Guo YL, Chang Q, Shi ZXH, Xie JY, Yun JJ, Zhang LM, Wu HJ. Regulating conduction and polarization losses by adjusting bonded N in N-doped Cu/CuO/C composites. J Colloid Interface Sci. 2023;639:444–53.

    Article  CAS  PubMed  Google Scholar 

  57. Yan J, Huang Y, Han XP, Gao XG, Liu PB. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos Part B Eng. 2019;163:67–76.

    Article  CAS  Google Scholar 

  58. Yang HL, Shen ZJ, Peng HL, Xiong ZQ, Liu CB, Xie Y. 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem Eng J. 2021;417: 128087.

    Article  CAS  Google Scholar 

  59. Zhu HH, Liang J, Jiao XG, Fu RR, Jiao QZ, Feng CH, Li HS, Zhang YY, Zhao Y. MOF-derived core-shell structured Cu9S5/NC@Co3S4/NC composite as a high-efficiency electromagnetic wave absorber. Ceram Int. 2023;49:9534–42.

    Article  CAS  Google Scholar 

  60. Wang P, Cheng LF, Zhang LT. One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. Carbon. 2017;125:207–20.

    Article  CAS  Google Scholar 

  61. Cui C, Geng L, Jiang S, Bai WH, Dai LL, Jiang SX, Hu J, Ren EH, Guo RH. Construction of hierarchical carbon fiber aerogel@hollow Co9S8 polyhedron for high-performance electromagnetic wave absorption at low-frequency. Chem Eng J. 2023;466: 143122.

    Article  CAS  Google Scholar 

  62. Chen XT, Wang ZD, Zhou M, Zhao Y, Tang SL, Ji GB. Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem Eng J. 2023;452: 139110.

    Article  CAS  Google Scholar 

  63. Dou YY, Liu N, Zhang XY, Jiang WT, Jiang XH, Yu LM. Synthesis of polymer-derived N, O-doped bowl-like hollow carbon microspheres for improved electromagnetic wave absorption using controlled template pyrolysis. Chem Eng J. 2023;463: 142398.

    Article  CAS  Google Scholar 

  64. Liu JL, Zhang LM, Wu HJ. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202200544.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liang LY, Li QM, Yan X, Feng YZ, Wang YM, Zhang HB, Zhou XP, Liu CT, Shen CY, Xie XL. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano. 2021;15:6622–32.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X, Tian XL, Qiao J, Fang XR, Liu KY, Liu C, Lin JP, Li LT, Liu W, Liu JR, Zeng ZH. In-situ fabrication of sustainable-N-doped-carbon-nanotube-encapsulated CoNi heterogenous nanocomposites for high-efficiency electromagnetic wave absorption. Small. 2023. https://doi.org/10.1002/smll.202302686.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cheng HR, Pan YM, Wang X, Liu CT, Shen CY, Schubert DW, Guo ZH, Liu XH. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022;14:63.

    Article  CAS  Google Scholar 

  68. Li MH, Zhu WJ, Li X, Xu HL, Fan XM, Wu HJ, Ye F, Xue JM, Li XQ, Cheng LF, Zhang LT. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv Sci. 2022;9:2201118.

    Article  CAS  Google Scholar 

  69. Jiang HJ, Cai L, Pan F, Shi YY, Cheng J, Yang Y, Shi Z, Chai XL, Wu HJ, Lu W. Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv Sci. 2023;10:2301599.

    Article  CAS  Google Scholar 

  70. Xu J, Liu MJ, Zhang XC, Li B, Zhang X, Zhang XL, Zhu CL, Chen YJ. Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl Phys Rev. 2022;9: 011402.

    Article  CAS  Google Scholar 

  71. Lan D, Wang Y, Wang YY, Zhu XF, Li HF, Guo XM, Ren JN, Guo ZH, Wu GL. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci. 2023;651:494–503.

    Article  CAS  PubMed  Google Scholar 

  72. Xu J, Zhang X, Zhao ZB, Hu H, Li B, Zhu CL, Zhang XT, Chen YJ. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small. 2021;17:2102032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2021ME194, 2022TSGC2448, 2023TSGC0545), and the key research and development program of Shandong Province(2021ZLGX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12351 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Wang, C., Tang, Y. et al. Metal–Organic Framework-Derived Hierarchical Cu9S5/C Nanocomposite Fibers for Enhanced Electromagnetic Wave Absorption. Adv. Fiber Mater. 6, 430–443 (2024). https://doi.org/10.1007/s42765-023-00362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00362-9

Keywords

Navigation