Skip to main content

Advertisement

Log in

Flexible DPPT-TT/PEO Fiber-Exploiting Electro-optical Synaptic Transistor for Artificial Withdrawal Reflex Arc

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

An artificial withdrawal reflex arc that can realize neuromorphic tactile perception, neural coding, information processing, and real-time responses was fabricated at the device level without dependence on algorithms. As an extended application, the artificial reflex arc was used to perform an object-lifting task based on tactile commands, and it can easily lift a 200-g weight. A fiber-exploiting electro-optical synaptic transistor (FEST) was fabricated to emulate synaptic plasticity modulated by electrical or optical spikes. Due to an ultrahigh spike duration-dependent plasticity index (~ 12,651%), the FEST was applied in electro-optical encrypted communication tasks and effectively increased signal recognition accuracy. In addition, the FEST has excellent bending resistance (bending radii = 0.6–1.4 cm, bending cycles > 2000) and stable illumination responses for a wide range of incident angles (0°–360°), demonstrating its potential applicability in wearable electronics. This work presents new design strategies for complete artificial reflex arcs and wearable neuromorphic devices, which may have applications in bioinspired artificial intelligence, human–machine interaction, and neuroprosthetics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. He K, Liu Y, Wang M, Chen G, Jiang Y, Yu J, Wan C, Qi D, Xiao M, Leow WR, Yang H, Antonietti M, Chen X. An artificial somatic reflex arc. Adv Mater. 2020;32: e1905399.

    Article  PubMed  Google Scholar 

  2. Ni Y, Han H, Liu J, Choi Y, Liu L, Xu Z, Yang L, Jiang C, Gao W, Xu W. A fibrous neuromorphic device for multi-level nerve pathways implementing knee jerk reflex and cognitive activities. Nano Energy. 2022;104: 107898.

    Article  CAS  Google Scholar 

  3. Shao L, Luo S, Wang Z, Xu X, Yan Y, Wu Y, Guo M, Wei D, Zhao Y, Liu Y. A flexible biohybrid reflex arc mimicking neurotransmitter transmission. Cell Rep Phys Sci. 2022;3: 100962.

    Article  CAS  Google Scholar 

  4. Kaspar C, Ravoo BJ, van der Wiel WG, Wegner SV, Pernice WHP. The rise of intelligent matter. Nature. 2021;594:345.

    Article  CAS  PubMed  Google Scholar 

  5. Kim Y, Chortos A, Xu W, Liu Y, Oh JY, Son D, Kang J, Foudeh AM, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T-W. A bioinspired flexible organic artificial afferent nerve. Science. 2018;360:998.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen D, Nakai T, Nishimoto S. Brain networks are decoupled from external stimuli during internal cognition. Neuroimage. 2022;256: 119230.

    Article  PubMed  Google Scholar 

  7. Fu Y, Chan YT, Jiang YP, Chang KH, Wu HC, Lai CS, Wang JC. Polarity-differentiated dielectric materials in monolayer graphene charge-regulated field-effect transistors for an artificial reflex arc and pain-modulation system of the spinal cord. Adv Mater. 2022;34: e2202059.

    Article  PubMed  Google Scholar 

  8. Jin Y, Luo C, Guo W, Xie J, Wu D, Wang R. Text classification based on conditional reflection. IEEE Access. 2019;7:76712.

    Article  Google Scholar 

  9. Carnevale D, Lembo G. Neuroimmune interactions in cardiovascular diseases. Cardiovasc Res. 2021;117:402.

    Article  CAS  PubMed  Google Scholar 

  10. Ni Y, Liu L, Liu J, Xu W. A high-strength neuromuscular system that implements reflexes as controlled by a multiquadrant artificial efferent nerve. ACS Nano. 2022;16:20294.

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Zhao S, Li L, Wang L, Cui S, Wang S, Lou Z, Shen G. All-flexible artificial reflex arc based on threshold-switching memristor. Adv Funct Mater. 2022;32:2200241.

    Article  CAS  Google Scholar 

  12. Nishino T. The swallowing reflex and its significance as an airway defensive reflex. Front Physiol. 2012;3:489.

    PubMed  Google Scholar 

  13. Tan H, Tao Q, Pande I, Majumdar S, Liu F, Zhou Y, Persson POA, Rosen J, van Dijken S. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat Commun. 2020;11:1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee Y, Oh JY, Xu W, Kim O, Kim TR, Kang J, Kim Y, Son D, Tok JB-H, Park MJ, Bao Z, Lee T-W. Stretchable organic optoelectronic sensorimotor synapse. Sci Adv. 2018;4:eaat7387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan V, Pisegna JM, Rosian RL, DiCarlo SE. Construction of a model demonstrating neural pathways and reflex arcs. Am J Physiol. 1996;271:S14.

    CAS  PubMed  Google Scholar 

  16. Guo J, Liu L, Bian B, Wang J, Zhao X, Zhang Y, Yan Y. Field-created coordinate cation bridges enable conductance modulation and artificial synapse within metal nanoparticles. Nano Lett. 2022;22:6794.

    Article  CAS  PubMed  Google Scholar 

  17. Yang JJ, Xia Q. Organic electronics: battery-like artificial synapses. Nat Mater. 2017;16:396.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun. 2014;5:3158.

    Article  PubMed  Google Scholar 

  19. Cheng Z, Ríos C, Pernice WHP, Wright CD, Bhaskaran H. On-chip photonic synapse. Sci Adv. 2017;3: e1700160.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ercan E, Lin YC, Yang WC, Chen WC. Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv Funct Mater. 2022;32:2270037.

    Article  Google Scholar 

  21. Ni Y, Yang L, Feng J, Liu J, Sun L, Xu W. Flexible optoelectronic neural transistors with broadband spectrum sensing and instant electrical processing for multimodal neuromorphic computing. SmartMat. 2022;4: e1154.

    Article  Google Scholar 

  22. Wang S, Chen C, Yu Z, He Y, Chen X, Wan Q, Shi Y, Zhang DW, Zhou H, Wang X, Zhou P. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater. 2019;31: e1806227.

    Article  PubMed  Google Scholar 

  23. Liu Q, Yin L, Zhao C, Wang J, Wu Z, Lei H, Liu Y, Tian B, Zhang Z, Zhao Z, Liu R, Ding C, Han Y, Ma C-Q, Song P, Mitrovic IZ, Lim EG, Wen Z. Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy. 2022;102: 107686.

    Article  CAS  Google Scholar 

  24. Sun Y, Lin Y, Zubair A, Xie D, Palacios T. WSe2/graphene heterojunction synaptic phototransistor with both electrically and optically tunable plasticity. 2D Mater. 2021;8: 035034.

    Article  CAS  Google Scholar 

  25. Wang Y, Zhou R, Cong H, Chen G, Ma Y, Xin S, Ge D, Qin Y, Ramakrishna S, Liu X, Wang F. Weak UV-stimulated synaptic transistors based on precise tuning of gallium-doped indium zinc oxide nanofibers. Adv Fiber Mater. 2023;5:1919.

    Article  CAS  Google Scholar 

  26. Wei H, Ni Y, Sun L, Yu H, Gong J, Du Y, Ma M, Han H, Xu W. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy. 2021;81: 105648.

    Article  CAS  Google Scholar 

  27. Shim H, Ershad F, Patel S, Zhang Y, Wang B, Chen Z, Marks TJ, Facchetti A, Yu C. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat Electron. 2022;5:660.

    Article  CAS  Google Scholar 

  28. Oh S, Cho J-I, Lee BH, Seo S, Lee J-H, Choo H, Heo K, Lee SY, Park J-H. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci Adv. 2021;7:eabg9450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Yan Y, Li E, Liu Y, Lai D, Lin Z, Liu Y, Chen H, Guo T. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy. 2020;75: 104952.

    Article  CAS  Google Scholar 

  30. Xiao P, Mao J, Ding K, Luo W, Hu W, Zhang X, Zhang X, Jie J. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv Mater. 2018;30: e1801729.

    Article  PubMed  Google Scholar 

  31. Zhang C, Ye WB, Zhou K, Chen HY, Yang JQ, Ding G, Chen X, Zhou Y, Zhou L, Li F, Han ST. Bioinspired artificial sensory nerve based on nafion memristor. Adv Funct Mater. 2019;29:1808783.

    Article  Google Scholar 

  32. Han ST, Zhou Y, Roy VA. Towards the development of flexible non-volatile memories. Adv Mater. 2013;25:5425.

    Article  CAS  PubMed  Google Scholar 

  33. Derderian C, Shumway KR, Tadi P. Physiology, withdrawal response. Treasure Island, FL: StatPearls Publishing; 2019.

    Google Scholar 

  34. Huseynova G, Xu Y, Nketia Yawson B, Shin E-Y, Lee MJ, Noh Y-Y. P-type doped ambipolar polymer transistors by direct charge transfer from a cationic organic dye Pyronin B ferric chloride. Org Electron. 2016;39:229.

    Article  CAS  Google Scholar 

  35. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010;10:1297.

    Article  CAS  PubMed  Google Scholar 

  36. Xu Z, Ni Y, Han H, Wei H, Liu L, Zhang S, Huang H, Xu W. A hybrid ambipolar synaptic transistor emulating multiplexed neurotransmission for motivation control and experience-dependent learning. Chinese Chem Lett. 2023;34: 107292.

    Article  CAS  Google Scholar 

  37. Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotechnol. 2013;8:13.

    Article  CAS  PubMed  Google Scholar 

  38. Abbott LF, Regehr WG. Synaptic computation. Nature. 2004;431:796.

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Singh M, Shen SW, Chih KY, Liu SW, Wu CI, Chu CW, Lin HW. Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv Funct Mater. 2020;31:2008259.

    Article  Google Scholar 

  40. Liu J, Gong J, Wei H, Li Y, Wu H, Jiang C, Li Y, Xu W. A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat Commun. 2022;13:7427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zamarreno-Ramos C, Camunas-Mesa LA, Perez-Carrasco JA, Masquelier T, Serrano-Gotarredona T, Linares-Barranco B. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front Neurosci. 2011;5:26.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Feldman DE. The spike-timing dependence of plasticity. Neuron. 2012;75:556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Linares-Barranco B, Serrano-Gotarredona T. Memristance can explain spike-time-dependent-plasticity in neural synapses. Nat Prec. 2010. https://doi.org/10.1038/npre.2009.3010.1.

    Article  Google Scholar 

  44. Schroeder BC, Kurosawa T, Fu T, Chiu YC, Mun J, Wang GJN, Gu X, Shaw L, Kneller JWE, Kreouzis T, Toney MF, Bao Z. Taming charge transport in semiconducting polymers with branched alkyl side chains. Adv Funct Mater. 2017;27:1701973.

    Article  Google Scholar 

  45. Nofriansyah D, Defit S, Nurcahyo GW, Ganefri G, Ridwan R, Ahmar AS, Rahim R. A new image encryption technique combining hill cipher method, Morse code and least significant bit algorithm. J Phys Conf Ser. 2018;954: 012003.

    Article  Google Scholar 

  46. Qu S, Sun L, Zhang S, Liu J, Li Y, Liu J, Xu W. An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction. Nat Commun. 2023;14:7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang J, Sun T, Zeng S, Hao D, Yang B, Dai S, Liu D, Xiong L, Zhao C, Huang J. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy. 2022;95: 106987.

    Article  CAS  Google Scholar 

  48. Rucci M, Ahissar E, Burr D. Temporal coding of visual space. Trends Cogn Sci. 2018;22:883.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ptito M, Bleau M, Bouskila J. The retina: a window into the brain. Cells. 2021;10:3269.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse models of inherited retinal degeneration with photoreceptor cell loss. Cells. 2020;9:931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79:618.

    Article  CAS  PubMed  Google Scholar 

  52. Hao J, Bonnet C, Amsalem M, Ruel J, Delmas P. Transduction and encoding sensory information by skin mechanoreceptors. Pflug Arch Eur J Phy. 2015;467:109.

    Article  CAS  Google Scholar 

  53. Sheng N, Peng Y, Sun F, Hu J. High-performance fasciated yarn artificial muscles prepared by hierarchical structuring and sheath–core coupling for versatile textile actuators. Adv Fiber Mater. 2023;5:1534.

    Article  CAS  Google Scholar 

  54. Chen J, Pakdel E, Xie W, Sun L, Xu M, Liu Q, Wang D. High-performance natural melanin/poly(vinyl alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv Fiber Mater. 2020;2:64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars of China (T2125005), the National Key R&D Program of China (2022YFE0198200, 2022YFA1204500, and 2022YFA1204504), the Tianjin Science Foundation for Distinguished Young Scholars (19JCJQJC61000), the Shenzhen Science and Technology Project (JCYJ20210324121002008), the National Natural Science Foundation of China (62204131), and the China Postdoctoral Science Foundation (2023T160336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7688 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Liu, J., Hu, J. et al. Flexible DPPT-TT/PEO Fiber-Exploiting Electro-optical Synaptic Transistor for Artificial Withdrawal Reflex Arc. Adv. Fiber Mater. 6, 401–413 (2024). https://doi.org/10.1007/s42765-023-00356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00356-7

Keywords

Navigation