Skip to main content

Advertisement

Log in

Unlocking Intrinsic Conductive Dynamics of Ionogel Microneedle Arrays as Wearable Electronics for Intelligent Fire Safety

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Ionogels have enabled flexible electronic devices for wide-ranging innovative applications in wearable electronics, soft robotics, and intelligent systems. Ionogels for flexible electronics need to essentially tolerate stress, temperature, humidity, and solvents that may cause their electrical conductivity, structural stability, processing compatibility and sensibility failure. Herein, we developed a novel in-situ photopolymerization protocol to fabricate intrinsically conductive, self-gated ionogels via ion-restriction dual effects. Highly sensitive and intelligent safety sensors with tunable stretchability, robust chemical stability, favorable printability, and complete recyclability, are programmed from defined microneedle arrays printed by the intrinsically conductive ionogel. Ultrahigh elasticity (~ 794% elongation), high compression tolerance (~ 90% deformation), improved mechanical strength (tensile and compressive strength of ~ 2.0 MPa and ~ 16.3 MPa, respectively) and remarkable transparency (> 91.1% transmittance), as well as high-temperature sensitivity (− 2.07% °C−1) and a wide working range (− 40 to 200 °C) can be achieved. In particular, the intrinsic sensing mechanisms of ion-restriction dual effects are unlocked based on DFT calculations and MD simulations, and operando temperature-dependent FTIR, and Raman technologies. Moreover, the real-time intelligent monitoring systems toward physical signals and precise temperature based on the microneedle array-structures sensors are also presented and demonstrate great potential applications for extreme environments, e.g., fire, deep-sea or aerospace.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within this article and Supplementary Information or from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Liu H, et al. Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy. 2019;66: 104161.

    Article  CAS  Google Scholar 

  2. Zhao G, et al. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy. 2019;59:302–10.

    Article  CAS  Google Scholar 

  3. Qu X, Xue J, Liu Y, Rao W, Liu Z, Li Z. Fingerprint-shaped triboelectric tactile sensor. Nano Energy. 2022;98:107324.

    Article  CAS  Google Scholar 

  4. Liu D, et al. Conductive polymer based hydrogels and their application in wearable sensors: a review. Mater Horiz. 2023;10:2800–23.

    Article  CAS  PubMed  Google Scholar 

  5. Fu Q, Chen Y, Sorieul M. Wood-Based Flexible Electronics. ACS Nano. 2020;14:3528–38.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou B, et al. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. Nanomicro Lett. 2023;15:72.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Hu D, Giorgio-Serchi F, Zhang S, Yang Y. Stretchable e-skin and transformer enable high-resolution morphological reconstruction for soft robots. Nat Mach Intell. 2023;5(3):261–72.

    Article  Google Scholar 

  8. Tee BC, Wang C, Allen R, Bao Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol. 2012;7:825–32.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater. 2016;15:937–50.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Yoo S, et al. Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices. Nat Commun. 2023;14:1024.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Chortos A, Bao Z. Skin-inspired electronic devices. Mater Today. 2014;17:321–31.

    Article  CAS  Google Scholar 

  12. Wang S, Oh JY, Xu J, Tran H, Bao Z. Skin-Inspired Electronics: An Emerging Paradigm. Acc Chem Res. 2018;51:1033–45.

    Article  CAS  PubMed  Google Scholar 

  13. Tian Q, et al. Hairy-Skin-Adaptive Viscoelastic Dry Electrodes for Long-Term Electrophysiological Monitoring. Adv Mater. 2023;35:e2211236.

    Article  PubMed  Google Scholar 

  14. Wang Z, et al. A universal interfacial strategy enabling ultra‐robust gel hybrids for extreme epidermal bio‐monitoring. Adv Funct Mater. 2023;33:2301117.

    Article  CAS  Google Scholar 

  15. Jayachandran D, et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat Electron. 2020;3:646–55.

    Article  Google Scholar 

  16. Kang SK, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Lee GH, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater. 2020;5:149–65.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Son D, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol. 2014;9:397–404.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Hao S, Fu Q, Meng L, Xu F, Yang J. A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nat Commun. 2022;13:6472.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Lu Y, et al. Multimodal Plant Healthcare Flexible Sensor System. ACS Nano. 2020;14:10966–75.

    Article  CAS  PubMed  Google Scholar 

  21. Bakadia BM, et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Adv Compos Hybrid Mater. 2022;5:2847–72.

    Article  CAS  Google Scholar 

  22. Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Black phosphorous-based human-machine communication interface. Nat Commun. 2023;14:2.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun. 2022;13:5224.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. Adv Mater. 2022;35:2203193.

    Article  Google Scholar 

  25. Zhang H, et al. Stretchable and Ultrasensitive Intelligent Sensors for Wireless Human-Machine Manipulation. Adv Funct Mater. 2021;31:2009466.

    Article  CAS  Google Scholar 

  26. Liu H, et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat Commun. 2022;13:3420.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Cao CF, et al. Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. Nanomicro Lett. 2022;14:92.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Cao L, et al. Electro-Blown Spun Silk/Graphene Nanoionotronic Skin for Multifunctional Fire Protection and Alarm. Adv Mater. 2021;33:2102500.

    Article  CAS  Google Scholar 

  29. Li G, et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat Electron. 2023;6:154–63.

    Article  Google Scholar 

  30. Chen B, et al. Liquid metal-tailored gluten network for protein-based e-skin. Nat Commun. 2022;13:1206.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Han S, Kim K, Lee SY, Moon S, Lee JY. Stretchable Electrodes Based on Over-Layered Liquid Metal Networks. Adv Mater. 2023;35:2210112.

    Article  CAS  Google Scholar 

  32. Chen S, et al. Ultrahigh Strain-Insensitive Integrated Hybrid Electronics Using Highly Stretchable Bilayer Liquid Metal Based Conductor. Adv Mater. 2023;35:2208569.

    Article  CAS  Google Scholar 

  33. Yang R, et al. 2D Transition Metal Dichalcogenides for Photocatalysis. Angew Chem Int Ed. 2023;62: e202218016.

    Article  CAS  Google Scholar 

  34. Cao W, et al. Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing. Nanomicro Lett. 2022;14:119.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Wang L, et al. Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter. 2022;5:3417–31.

    Article  CAS  Google Scholar 

  36. Feng J, et al. Multifunctional MXene-Bonded Transport Network Embedded in Polymer Electrolyte Enables High-Rate and Stable Solid-State Zinc Metal Batteries. Adv Funct Mater. 2022;32:2207909.

    Article  CAS  Google Scholar 

  37. Liao H, Guo X, Wan P, Yu G. Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv Funct Mater. 2019;29:1904507.

    Article  Google Scholar 

  38. Kong D, et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater. 2022;5:1976–87.

    Article  CAS  Google Scholar 

  39. Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Adv Funct Mater. 2021;31:2104288.

    Article  CAS  Google Scholar 

  40. Cai Y, et al. Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors. Adv Mater. 2017;29:1606411.

    Article  Google Scholar 

  41. Ye Y, Zhang Y, Chen Y, Han X, Jiang F. Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing-Tolerant Ionic Conductive Organohydrogel for Multi-Functional Sensors. Adv Funct Mater. 2020;30:2003430.

    Article  CAS  Google Scholar 

  42. Pang Y, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano. 2018;12:2346–54.

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, et al. Ultrasensitive Pressure Sensor Sponge Using Liquid Metal Modulated Nitrogen-Doped Graphene Nanosheets. Nano Lett. 2022;22:2817–25.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Yang R, et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nature Synthesis. 2023;2:101–18.

    Article  ADS  Google Scholar 

  45. Ebrahim S, Shokry A, Khalil MMA, Ibrahim H, Soliman M. Polyaniline/Ag nanoparticles/graphene oxide nanocomposite fluorescent sensor for recognition of chromium (VI) ions. Sci Rep. 2020;10:13617.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Fang B, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun. 2022;13:2101.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Xue M, Li F, Chen D, Yang Z, Wang X, Ji J. Gas Sensors: High-Oriented Polypyrrole Nanotubes for Next-Generation Gas Sensor Adv. Mater. 2016;28:8067–8067.

    CAS  Google Scholar 

  48. Park H, et al. Microporous Polypyrrole-Coated Graphene Foam for High-Performance Multifunctional Sensors and Flexible Supercapacitors. Adv Funct Mater. 2018;28:1707013.

    Article  Google Scholar 

  49. Qin J, et al. Hierarchical Ordered Dual-Mesoporous Polypyrrole/Graphene Nanosheets as Bi-Functional Active Materials for High-Performance Planar Integrated System of Micro-Supercapacitor and Gas Sensor. Adv Funct Mater. 2020;30:1909756.

    Article  CAS  Google Scholar 

  50. Pan L, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun. 2014;5:3002.

    Article  PubMed  ADS  Google Scholar 

  51. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng S, et al. Ultrathin Hydrogel Films Toward Breathable Skin-Integrated Electronics. Adv Mater. 2022;35:2206793.

    Article  Google Scholar 

  53. Liu X, Inda ME, Lai Y, Lu TK, Zhao X. Engineered Living Hydrogels. Adv Mater. 2022;34:2201326.

    Article  CAS  Google Scholar 

  54. Hu L, et al. Hydrogel-Based Flexible Electronics. Adv Mater. 2022;35:2205326.

    Article  Google Scholar 

  55. Han IK, et al. Electroconductive, Adhesive, Non-swelling, and Viscoelastic Hydrogels for Bioelectronics. Adv Mater. 2022;35:2203431.

    Article  Google Scholar 

  56. Cheng K, et al. Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv Compos Hybrid Mater. 2022;5:2834–46.

    Article  CAS  Google Scholar 

  57. Lei Z, Wu P. Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels. Matter. 2023;6:429–44.

    Article  CAS  Google Scholar 

  58. Li X, Liu J, Zhang X. Pressure/temperature dual‐responsive cellulose nanocrystal hydrogels for on‐demand schemochrome patterning. Adv Funct Mater. 2023;33:2306208.

    Article  Google Scholar 

  59. Yu Z, Wu P. Underwater Communication and Optical Camouflage Ionogels. Adv Mater. 2021;33:2008479.

    Article  CAS  Google Scholar 

  60. Luo Z, Li W, Yan J, Sun J. Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review. Adv Funct Mater. 2022;32:2203988.

    Article  CAS  Google Scholar 

  61. Cao Y, et al. Self-healing electronic skins for aquatic environments. Nat Electron. 2019;2:75–82.

    Article  Google Scholar 

  62. Lei Z, Wu P. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat Commun. 2019;10:3429.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  63. Sun L, et al. Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Adv Fiber Mater. 2021;4:98–107.

    Article  Google Scholar 

  64. Wang J, et al. Intrinsic ionic confinement dynamic engineering of ionomers with low dielectric-k, high healing and stretchability for electronic device reconfiguration. Chem Eng J. 2023;453: 139837.

    Article  CAS  Google Scholar 

  65. Zheng Y, Cui T, Wang J, Ge H, Gui Z. Unveiling innovative design of customizable adhesive flexible devices from self-healing ionogels with robust adhesion and sustainability. Chem Eng J. 2023;471: 144617.

    Article  CAS  Google Scholar 

  66. Xu L, et al. A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Adv Mater. 2021;33:2105306.

    Article  CAS  Google Scholar 

  67. Li W, et al. Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation. Adv Mater. 2022;34:2203049.

    Article  CAS  Google Scholar 

  68. Wen D-L, et al. Silk Fibroin-Based Wearable All-Fiber Multifunctional Sensor for Smart Clothing. Adv Fiber Mater. 2022;4:873–84.

    Article  CAS  Google Scholar 

  69. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–92.

    Article  PubMed  Google Scholar 

  70. Lei Z, Wu P. Bioinspired Quasi-Solid Ionic Conductors: Materials, Processing, and Applications. Acc Mater Res. 2021;2:1203–14.

    Article  CAS  Google Scholar 

  71. Liu H, et al. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals. Adv Mater. 2021;33:2004782.

    Article  CAS  Google Scholar 

  72. Cui T, et al. Enhanced light trapping effect of hierarchical structure assembled from flower-like cobalt tetroxide and 3D-printed structure for efficient solar evaporation. Chem Eng J. 2023;451: 139102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Key R&D Program of China (2020YFA0709900), the National Natural Science Foundation of China (22175167), and the National Key R&D Program of the MOST of China (Grant No. 2022YFA1602601).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YZ conceived and designed this work. JZ and ZG provided financial support. YZ carried out the main experiments. YZ, JW, and TC performed the characterization and data analysis. YZ and JW performed molecular dynamics simulations and calculations. YZ and TC completed the finite-element simulation. HL and YZ performed the real-time intelligent monitoring systems design, construction, and operation. YZ and JZ wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Jixin Zhu or Zhou Gui.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 23042 KB)

Supplementary file2 (MP4 17803 KB)

Supplementary file3 (MP4 18552 KB)

Supplementary file4 (MP4 18401 KB)

Supplementary file5 (MP4 22783 KB)

Supplementary file6 (PDF 6990 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, H., Wang, J. et al. Unlocking Intrinsic Conductive Dynamics of Ionogel Microneedle Arrays as Wearable Electronics for Intelligent Fire Safety. Adv. Fiber Mater. 6, 195–213 (2024). https://doi.org/10.1007/s42765-023-00344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00344-x

Keywords

Navigation