Skip to main content
Log in

Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Application of liquid metals and electrospun nanofibers offer a promising solution to insufficient resilience and human comfort of wearable electronics. However, a sustainable manufacturing process is hindered by the low surface tension of liquid metal, and it's poor attachment to the surface of the fabric. This research reveals that tuning the pressure can control the adhesion of semiliquid metal (SLM) on substrates with varying roughness to achieve selective adhesion. Furthermore, a simple and rapid (30 s) fabrication method based on selective adhesion and low mobility of SLM is presented for preparing a multilayered monitoring device capable of measuring human body temperature and ECG signals for 24 h. This device exhibits excellent air permeability of 311.1 g·m−2·h−1, water resistance (washing for 120 min). Our novel approach can inspire the development of methods for printing liquid metal circuits on roughness substrates and enable the practical use of waterproof and breathable wearable electronic devices in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Wang P, Yu W, Li G, Meng C, Guo S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem Eng J. 2023;452: 139174.

    Article  CAS  Google Scholar 

  2. Hu XR, Huang T, Liu ZD, Wang G, Chen D, Guo QL, Yang SW, Jin ZW, Lee JM, Ding GQ. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. J Mater Chem A. 2020;8:14778.

    Article  CAS  Google Scholar 

  3. Min H, Jang S, Kim D, Kim J, Baik S, Chun S, Pang C. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches. ACS Appl Mater Interfaces. 2020;12:14425.

    Article  CAS  PubMed  Google Scholar 

  4. Sun N, Wang GG, Zhao HX, Cai YW, Li JZ, Li GZ, Zhang XN, Wang BL, Han JC, Wang YH, Yang Y. Waterproof, breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics. Nano Energy. 2021;90: 106639.

    Article  CAS  Google Scholar 

  5. Feng W, Chen Y, Wang W, Yu D. A waterproof and breathable textile pressure sensor with high sensitivity based on PVDF/ZnO hierarchical structure. Colloids Surf A. 2022;633: 127890.

    Article  CAS  Google Scholar 

  6. Sala de Medeiros M, Goswami D, Chanci D, Moreno C, Martinez RV. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy. 2021;87: 106155.

    Article  CAS  Google Scholar 

  7. Yin FF, Guo YJ, Li H, Yue WJ, Zhang CW, Chen D, Geng W, Li Y, Gao S, Shen GZ. A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 2022;15:9341.

    Article  CAS  Google Scholar 

  8. Ma YL, Ouyang JY, Raza T, Li P, Jian AJ, Li ZQ, Liu H, Chen M, Zhang XJ, Qu LJ, Tian MW, Tao GM. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy. 2021;85: 105941.

    Article  CAS  Google Scholar 

  9. Yang S, Liu S, Ding XJ, Zhu B, Shi JD, Yang B, Liu SR, Chen W, Tao XM. Permeable and washable electronics based on polyamide fibrous membrane for wearable applications. Compos Sci Technol. 2021;207: 108729.

    Article  CAS  Google Scholar 

  10. Shi X, Zuo Y, Zhai P, Shen JH, Yang YYW, Gao Z, Liao M, Wu JX, Wang JW, Xu XJ, Tong Q, Zhang B, Wang BJ, Sun XM, Zhang LH, Pei QB, Jin DY, Chen PN, Peng HS. Large-area display textiles integrated with functional systems. Nature. 2021;591:240.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, sewable, all-carbon electrodes and signal wires for electronic clothing. Nano Lett. 2021;21:7093.

    Article  CAS  PubMed  Google Scholar 

  12. Yang W, Li NW, Zhao SY, Yuan ZQ, Wang JN, Du XY, Wang B, Cao R, Li XY, Xu WH, Wang ZL, Li CJ. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol. 2018;3:1700241.

    Article  Google Scholar 

  13. Zhang HQ, He RY, Liu H, Niu Y, Li ZD, Han F, Li J, Zhang XW, Xu F. A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sens Actuators A Phys. 2021;322: 112611.

    Article  CAS  Google Scholar 

  14. He JM, Shi F, Liu QH, Pang YJ, He D, Sun WC, Peng L, Yang J, Qu MN. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission. Colloids Surf A Physicochem Eng Asp. 2022;642: 128676.

    Article  CAS  Google Scholar 

  15. Luo JC, Gao SJ, Luo H, Wang L, Huang XW, Guo Z, Lai XJ, Lin LW, Li RKY, Gao JF. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J. 2021;406: 126898.

    Article  CAS  Google Scholar 

  16. Zhao ZZ, Huang QY, Yan C, Liu YD, Zeng XW, Wei XD, Hu YF, Zheng ZJ. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy. 2020;70: 104528.

    Article  CAS  Google Scholar 

  17. Du PB, Zhang JP, Wang J, Cai ZS, Ge FY. A washable and breathable metallized fabric designed by silane bionic. Colloids Surf A Physicochem Eng Asp. 2022;637: 128232.

    Article  CAS  Google Scholar 

  18. Liang XP, Zhu MJ, Li HF, Dou JX, Jian MQ, Xia KL, Li S, Zhang YY. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater. 2022;32:202200162.

    Article  Google Scholar 

  19. Oh J, Jang SG, Moon S, Kim J, Park HK, Kim HS, Park SM, Jeong U. Air-permeable waterproofing electrocardiogram patch to monitor full-day activities for multiple days. Adv Healthc Mater. 2022;11:2102703.

    Article  CAS  Google Scholar 

  20. Sala de Medeiros M, Chanci D, Moreno C, Goswami D, Martinez RV. Waterproof, breathable, and antibacterial self-powered e-textiles based on omniphobic triboelectric nanogenerators. Adv Funct Mater. 2019;29:1904350.

    Article  CAS  Google Scholar 

  21. Tian B, Fang YH, Liang J, Zheng K, Guo PW, Zhang XY, Wu YFS, Liu Q, Huang ZD, Cao CY, Wu W. Fully printed stretchable and multifunctional e-textiles for aesthetic wearable electronic systems. Small. 2022;18:2107298.

    Article  CAS  Google Scholar 

  22. Liu HZ, Li HG, Wang ZC, Wei X, Zhu HJ, Sun MZ, Lin Y, Xu LZ. Robust and multifunctional Kirigami electronics with a tough and permeable aramid nanofiber framework. Adv Mater. 2022;34:2207350.

    Article  CAS  Google Scholar 

  23. Yan XL, Chen S, Zhang GY, Shi W, Peng ZF, Liu ZL, Chen YZ, Huang YH, Liu L. Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electrophysiological monitoring. Compos Sci Technol. 2022;230: 109751.

    Article  CAS  Google Scholar 

  24. Ye ZL, Ling Y, Yang MY, Xu YD, Zhu L, Yan Z, Chen PY. A breathable, reusable, and zero-power smart face mask for wireless cough and mask-wearing monitoring. ACS Nano. 2022;16:5874.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Rodriguez-Serrano AF, Yeung SY, Hsing IM. Highly stretchable and skin adhesive soft bioelectronic patch for long-term ambulatory electrocardiography monitoring. Adv Mater Technol. 2022;7:202101435.

    Google Scholar 

  26. Zhang C, Li Z, Li H, Yang Q, Wang H, Shan C, Zhang J, Hou X, Chen F. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces. 2022;14:38328.

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang Q, Ma Z, Gao Y, Zhang Y, Wang S, Lu X, Hu H, Cheung C, Huang Q, Zheng Z. Liquid–metal-superlyophilic and conductivity–strain-enhancing scaffold for permeable superelastic conductors. Adv Funct Mater. 2021;31:2105587.

    Article  CAS  Google Scholar 

  28. Dong JC, Peng YD, Pu L, Chang KQ, Li L, Zhang C, Ma PM, Huang YP, Liu TX. Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable janus e-textiles. Nano Lett. 2022;22:7597.

    Article  CAS  PubMed  Google Scholar 

  29. Guo R, Yao SY, Sun XY, Liu J. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: a general method towards fast fabrication of flexible electronics. Sci China Mater. 2019;62:982.

    Article  Google Scholar 

  30. Guo R, Li TY, Wu ZY, Wan CX, Niu J, Huo WX, Yu HX, Huang X. Thermal transfer-enabled rapid printing of liquid metal circuits on multiple substrates. ACS Appl Mater Interfaces. 2022;14:37028.

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Li R, Cao Y, Chen S, Yuan B, Zhu X, Cheng J, Duan M, Liu J. Liquid Metal Fibers. Adv Fiber Mater. 2022;4:987.

    Article  CAS  Google Scholar 

  32. Yi P, Zou HH, Yu YH, Li XF, Li ZY, Deng G, Chen CY, Fang M, He JZ, Sun X, Liu XF, Shui JL, Yu RH. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano. 2022;16:14490.

    Article  CAS  PubMed  Google Scholar 

  33. Lin RZ, Kim HJ, Achavananthadith S, Xiong Z, Lee JKW, Kong YL, Ho JS. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun. 2022;13:2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi XJ, Zhao HT, Wang LH, Sun FQ, Ye XR, Zhang XJ, Tian MW, Qu LJ. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem Eng J. 2022;437: 135382.

    Article  CAS  Google Scholar 

  35. Guo R, Wang HM, Sun XY, Yao SY, Chang H, Wang HZ, Liu J, Zhang YY. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces. 2019;11:30019.

    Article  CAS  PubMed  Google Scholar 

  36. Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-integrated liquid metal electrodes for electrophysiological monitoring. Adv Healthc Mater. 2022;11:2200745.

    Article  CAS  Google Scholar 

  37. Li YY, Wang SL, Zhang JX, Ma XH, Cao ST, Sun YP, Feng SX, Fang T, Kong DS. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl Mater Interfaces. 2022;14:13713.

    Article  CAS  PubMed  Google Scholar 

  38. Yang XQ, Wang SQ, Liu MY, Li LH, Zhao YY, Wang YF, Bai YY, Lu QF, Xiong ZP, Feng SM, Zhang T. All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free biopotential monitoring. Small. 2022;18:202106477.

    Google Scholar 

  39. Wang M, Ma C, Uzabakiriho PC, Chen X, Chen ZR, Cheng Y, Wang ZR, Zhao G. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano. 2021;15:19364.

    Article  CAS  PubMed  Google Scholar 

  40. Ma ZJ, Huang QY, Xu Q, Zhuang QN, Zhao X, Yang YH, Qiu H, Yang ZL, Wang C, Chai Y, Zheng ZJ. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater. 2021;20:859.

    Article  CAS  PubMed  Google Scholar 

  41. Guo R, Zhen Y, Huang X, Liu J. Spatially selective adhesion enabled transfer printing of liquid metal for 3D electronic circuits. Appl Mater Today. 2021;25: 101236.

    Article  Google Scholar 

  42. Zhang S, Wang B, Jiang JJ, Wu K, Guo CF, Wu ZG. High-fidelity conformal printing of 3d liquid alloy circuits for soft electronics. ACS Appl Mater Interfaces. 2019;11:7148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Research and Development Program of Zhejiang Province under Grant nos. 2021C05005 and 2021C05007-2 and the National Natural Science Foundation of China under Grant no. 52121002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7724 kb)

Supplementary file2 (MP4 10653 kb)

Supplementary file3 (MP4 997 kb)

Supplementary file4 (MP4 9469 kb)

Supplementary file5 (MP4 8642 kb)

Supplementary file6 (MP4 11984 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Li, T., Jiang, C. et al. Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics. Adv. Fiber Mater. 6, 354–366 (2024). https://doi.org/10.1007/s42765-023-00343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00343-y

Keywords

Navigation