Skip to main content
Log in

Anti-polyelectrolyte Zwitterionic Block Copolymers as Adaptable Uranium Harvester in High-Salinity Environments: Catalyst-Free Light-Driven Polymerization and Conformational Dynamics Study

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Developing polymeric adsorbents for uranium harvesting from high-salinity environments remains a daunting challenge due to the ‘polyelectrolyte effect’-induced conformational collapse compromising the ligand availability. A catalyst-free, visible light-controlled radical polymerization has been presented here for the tailor-made synthesis of zwitterionic block copolymers (BCPs) bearing uranophilic ligands. The novel anti-polyelectrolyte uranium harvesters exhibited significant salinity resistance. The facile and robust photosynthetic strategy offers a significantly high monomer conversion (α > 95%) that facilitates “one-pot” chain extension to develop the BCPs. Metal catalyst residues, as found in conventional controlled radical polymerizations, are avoided and promoted to synthesize fascinating polymeric materials. We also highlight the first study, by integrating computational modeling with QCM-D analysis, on the interplay between polymer conformational dynamics and chemical adsorption behaviors. With zwitterionic polymer segments as conformational regulators, the BCPs exhibit remarkable ‘anti-polyelectrolyte effect’ by maintaining stretched conformations in saline solutions. Improved ligand accessibility and promotion of diffusional mass transfer are achieved, enabling a high adsorption capacity toward uranium with remarkably fast kinetics in spiked natural seawater and salt lake brines.

Graphical Abstract

A catalyst-free, visible light-regulated RAFT polymerization method is established to develop zwitterionic block copolymers bearing uranophilic ligands as new-generation uranium harvesters adaptable in high-salinity environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Joung H, Kim C, Yu J, Lee S, Paeng K, Yang J. Impact of chain conformation on structural heterogeneity in polymer network. Nano Lett. 2022;22:5487.

    Article  CAS  Google Scholar 

  2. Zhou LY, Zhu YH, Wang XY, Shen C, Wei XW, Xu T, He ZY. Novel zwitterionic vectors: multi-functional delivery systems for therapeutic genes and drugs. Comput Struct Biotechnol J. 1980;2020:18.

    Google Scholar 

  3. Bosman AW, Vestberg R, Heumann A, Fréchet JMJ, Hawker CJ. A modular approach toward functionalized three-dimensional macromolecules: from synthetic concepts to practical applications. J Am Chem Soc. 2003;125:715.

    Article  CAS  Google Scholar 

  4. Krishnamoorthy M, Li D, Sharili AS, Gulin-Sarfraz T, Rosenholm JM, Gautrot JE. Solution conformation of polymer brushes determines their interactions with DNA and transfection efficiency. Biomacromol. 2017;18:4121.

    Article  CAS  Google Scholar 

  5. Yoo J, Kim K, Kim S, Park HH, Shin H, Joo J. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery. Nanoscale. 2022;14:14482.

    Article  CAS  Google Scholar 

  6. Mollick S, Saurabh S, More YD, Fajal S, Shirolkar MM, Mandal W, Ghosh SK. Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework. Energy Environ Sci. 2022;15:3462.

    Article  CAS  Google Scholar 

  7. Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse GIN, Kruger PE, Telfer SG, Ma S. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv Mater. 2021;33:e2106621.

    Article  Google Scholar 

  8. Tang N, Liang J, Niu C, Wang H, Luo Y, Xing W, Ye S, Liang C, Guo H, Guo J, Zhang Y, Zeng G. Amidoxime-based materials for uranium recovery and removal. J Mater Chem A. 2020;8:7588.

    Article  CAS  Google Scholar 

  9. Wiechert AI, Liao WP, Hong E, Halbert CE, Yiacoumi S, Saito T, Tsouris C. Influence of hydrophilic groups and metal-ion adsorption on polymer-chain conformation of amidoxime-based uranium adsorbents. J Colloid Interface Sci. 2018;524:399.

    Article  CAS  Google Scholar 

  10. Xu X, Yue Y, Cai D, Song J, Han C, Liu Z, Wang D, Xiao J, Wu H. Aqueous solution blow spinning of seawater-stable polyamidoxime nanofibers from water-soluble precursor for uranium extraction from seawater. Small Methods. 2020;4:2000558.

    Article  Google Scholar 

  11. Xie Y, Liu Z, Geng Y, Li H, Wang N, Song Y, Wang X, Chen J, Wang J, Ma S, Ye G. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem Soc Rev. 2023;52:97.

    Article  CAS  Google Scholar 

  12. Liu Z, Lan Y, Jia J, Geng Y, Dai X, Yan L, Hu T, Chen J, Matyjaszewski K, Ye G. Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater. Nat Commun. 2022;13:3918.

    Article  CAS  Google Scholar 

  13. Zhou D, Zhu L-W, Wu B-H, Xu Z-K, Wan L-S. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem. 2022;13:300.

    Article  CAS  Google Scholar 

  14. Saito T, Brown S, Chatterjee S, Kim J, Tsouris C, Mayes RT, Kuo L-J, Gill G, Oyola Y, Janke CJ, Dai S. Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J Mater Chem A. 2014;2:14674.

    Article  CAS  Google Scholar 

  15. Brown S, Yue Y, Kuo L-J, Mehio N, Li M, Gill G, Tsouris C, Mayes RT, Saito T, Dai S. Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind Eng Chem Res. 2016;55:4139.

    Article  CAS  Google Scholar 

  16. Feng H, Dolejsi M, Zhu N, Yim S, Loo W, Ma P, Zhou C, Craig GSW, Chen W, Wan L, Ruiz R, de Pablo JJ, Rowan SJ, Nealey PF. Optimized design of block copolymers with covarying properties for nanolithography. Nat Mater. 2022;21:1426.

    Article  CAS  Google Scholar 

  17. Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Basbug Alhan H, Zhao C, Harth E. Linear block copolymer synthesis. Chem Rev. 2022;122:14471.

    Article  CAS  Google Scholar 

  18. Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photo-induced controlled/living polymerizations. Angew Chem Int Ed. 2022;61:e20211737.

    Article  Google Scholar 

  19. Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic biomaterials. Chem Rev. 2022;122:17073.

    Article  CAS  Google Scholar 

  20. Lei C, Guo Y, Guan W, Lu H, Shi W, Yu G. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew Chem Int Ed. 2022;61:e202200271.

    Article  CAS  Google Scholar 

  21. Li M, Zhuang B, Yu J. Functional zwitterionic polymers on surface: structures and applications. Chem Asian J. 2020;15:2060.

    Article  CAS  Google Scholar 

  22. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci. 2016;62:73.

    Article  CAS  Google Scholar 

  23. Lee Y, Boyer C, Kwon MS. Photocontrolled RAFT polymerization: past, present, and future. Chem Soc Rev. 2023;52:3035.

    Article  CAS  Google Scholar 

  24. Corrigan N, Boyer C. In the limelight: 2D and 3D materials via photo-controlled radical polymerization. Trends Chem. 2020;2:689.

    Article  CAS  Google Scholar 

  25. Zhang G, Wu C. Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol Rapid Commun. 2009;30:328.

    Article  Google Scholar 

  26. Solongo SK, Gomez-Flores A, You J, Choi S, Heyes GW, Ilyas S, Lee J, Kim H. Cationic collector conformations on an oxide mineral interface: Roles of pH, ionic strength, and ion valence. Miner Eng. 2020;150:106277.

    Article  CAS  Google Scholar 

  27. Zou W, Gong L, Huang J, Pan M, Lu Z, Sun C, Zeng H. Probing the adsorption and interaction mechanisms of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal surface: impact of salinity. Miner Eng. 2019;141:105841.

    Article  CAS  Google Scholar 

  28. Bagheri A, Engel KE, Bainbridge CWA, Xu J, Boyer C, Jin J. 3D printing of polymeric materials based on photo-RAFT polymerization. Polym Chem. 2020;11:641.

    Article  CAS  Google Scholar 

  29. Lee Y, Boyer C, Kwon MS. Visible-light-driven polymerization towards the green synthesis of plastics. Nat Rev Mater. 2021;7:74.

    Article  CAS  Google Scholar 

  30. Hartlieb M. Photo-iniferter RAFT polymerization. Macromol Rapid Commun. 2022;43: e2100514.

    Article  Google Scholar 

  31. McKenzie TG, Fu Q, Uchiyama M, Satoh K, Xu J, Boyer C, Kamigaito M, Qiao GG. Beyond traditional RAFT: alternative activation of thiocarbonylthio compounds for controlled polymerization. Adv Sci. 2016;3:1500394.

    Article  Google Scholar 

  32. Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and perspectives beyond traditional RAFT polymerization. Adv Sci. 2020;7:2001656.

    Article  CAS  Google Scholar 

  33. Zhao Y-H, Wee K-H, Bai R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J Membr Sci. 2010;362:326.

    Article  CAS  Google Scholar 

  34. Wen S, Sun Y, Liu R, Chen L, Wang J, Peng S, Ma C, Yuan Y, Gong W, Wang N. Supramolecularly poly(amidoxime)-loaded macroporous resin for fast uranium recovery from seawater and uranium-containing wastewater. ACS Appl Mater Interfaces. 2021;13:3246.

    Article  CAS  Google Scholar 

  35. Huang T, Liu H, Liu P, Liu P, Li L, Shen J. Zwitterionic copolymers bearing phosphonate or phosphonic motifs as novel metal-anchorable anti-fouling coatings. J Mater Chem B. 2017;5:5380.

    Article  CAS  Google Scholar 

  36. Peng Z, Xiong C, Wang W, Tan F, Wang X, Qiao X, Wong PK. Hydrophobic modification of nanoscale zero-valent iron with excellent stability and floatability for efficient removal of floating oil on water. Chemosphere. 2018;201:110.

    Article  CAS  Google Scholar 

  37. He N, Li H, Cheng C, Dong H, Lu X, Wen J, Wang X. Enhanced marine applicability of adsorbent for uranium via synergy of hyperbranched poly(amido amine) and amidoxime groups. Chem Eng J. 2020;395:125162.

    Article  CAS  Google Scholar 

  38. Wong CK, Qiang X, Müller AHE, Gröschel AH. Self-assembly of block copolymers into internally ordered microparticles. Prog Polym Sci. 2020;102:101211.

    Article  CAS  Google Scholar 

  39. Li D, Wei Q, Wu C, Zhang X, Xue Q, Zheng T, Cao M. Superhydrophilicity and strong salt-affinity: zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci. 2020;278: 102141.

    Article  CAS  Google Scholar 

  40. Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng. 2018;19:86.

    Article  Google Scholar 

  41. Sun Q, Song Y, Aguila B, Ivanov AS, Bryantsev VS, Ma S. Spatial engineering direct cooperativity between binding sites for uranium sequestration. Adv Sci. 2021;8:2001573.

    Article  CAS  Google Scholar 

  42. Aguila B, Sun Q, Cassady H, Abney CW, Li B, Ma S. Design strategies to enhance amidoxime chelators for uranium recovery. ACS Appl Mater Interfaces. 2019;11:30919.

    Article  CAS  Google Scholar 

  43. Wei X, Liu Q, Zhang H, Lu Z, Liu J, Chen R, Li R, Li Z, Liu P, Wang J. Efficient removal of uranium(vi) from simulated seawater using amidoximated polyacrylonitrile/FeOOH composites. Dalton Trans. 2017;46:15746.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Fund for Excellent Young Scholars under Project No. 21922604, the National Natural Science Foundation of China under Project No. 22206104, and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiyun Geng or Gang Ye.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1797 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, Z., Geng, Y. et al. Anti-polyelectrolyte Zwitterionic Block Copolymers as Adaptable Uranium Harvester in High-Salinity Environments: Catalyst-Free Light-Driven Polymerization and Conformational Dynamics Study. Adv. Fiber Mater. 5, 1879–1891 (2023). https://doi.org/10.1007/s42765-023-00329-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00329-w

Keywords

Navigation