Skip to main content

Advertisement

Log in

Polysilsesquioxane-PBO Wave-Transparent Composite Paper with Excellent Mechanical Properties and Ultraviolet Aging Resistance

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The rapid development of radar antenna systems to meet requirements for high integration and precision places stringent requirements on the dielectric properties, mechanical properties and heat resistance of wave-transparent composite paper. In this paper, poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers are first dissolved by trifluoroacetic acid/methyl sulfonic acid to obtain PBO nanofibers (PNF), and the amino polysilsesquioxane (NH2-POSS) is dispersed uniformly inside the PNF via ultrasonic-assisted and deprotonation. The POSS-PNF composite paper is fabricated by the method of “suction filtration and hot-pressing”. Because of the uniformly dispersion of NH2-POSS, the POSS-PNF composite paper has a low dielectric constant (ε, 2.08) and dielectric loss tangent (tanδ, 0.0047), and the wave-transparent coefficient (|T|2) is 96.7% (1 MHz), which is higher than that of PNF paper (95.5%, 1 MHz). Additionally, the POSS-PNF composite paper possesses excellent tensile strength of 163.3 MPa, tensile modulus of 6.9 GPa, toughness of 9.1 MJ/m3, outstanding flame retardancy and excellent UV aging resistance. According to a simulation of the radome honeycomb panel, POSS-PNF composite paper has low loss and reflections of electromagnetic waves in the X-band (8.4 ~ 12.4 GHz), and wide angle of incidence (0°–80°), which favor high |T|2. The results indicate that the POSS-PNF composite paper has excellent potential for applications in the fields of aerospace, wearable flexible electronic devices and 5G communication.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Evans AM, Giri A, Sangwan VK, Xun S, Bartnof M, Torres-Castanedo CG, Balch HB, Rahn MS, Bradshaw NP, Vitaku E, Burke DW, Li H, Bedzyk MJ, Wang F, Brédas J-L, Malen JA, McGaughey AJH, Hersam MC, Dichtel WR, Hopkins PE. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat Mater. 2021;20:1142–8.

    Article  CAS  Google Scholar 

  2. Xu L, Zhan K, Ding S, Zhu J, Liu M, Fan W, Duan P, Luo K, Ding B, Liu B, Liu Y, Cheng H-M, Qiu L. A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano. 2023;17:4886–95.

    Article  CAS  Google Scholar 

  3. Pan X, Bao Z, Xu W, Gao H, Wu B, Zhu Y, Yu G, Chen J, Zhang S, Li L, Wu H, Li X, Yu S. Recyclable nacre-like aramid-mica nanopapers with enhanced mechanical and electrical insulating properties. Adv Funct Mater. 2023;33:2210901.

    Article  CAS  Google Scholar 

  4. Chen J, Zhou Y, Huang X, Yu C, Han D, Wang A, Zhu Y, Shi K, Kang Q, Li P, Jiang P, Qian X, Bao H, Li S, Wu G, Zhu X, Wang Q. Ladderphane copolymers for high-temperature capacitive energy storage. Nature. 2023;615:62–6.

    Article  CAS  Google Scholar 

  5. Yang B, Wang L, Zhang M, Luo J, Lu Z, Ding X. Fabrication, applications, and prospects of aramid nanofiber. Adv Funct Mater. 2020;30:2000186.

    Article  CAS  Google Scholar 

  6. Zhang K, Zhuang Q, Liu X, Yang G, Cai R, Han Z. A new benzoxazine containing benzoxazole-functionalized polyhedral oligomeric silsesquioxane and the corresponding polybenzoxazine nanocomposites. Macromolecules. 2013;46:2696–704.

    Article  CAS  Google Scholar 

  7. Zhang B, Wu S, Li C, Xiao Y, Liu J. Novel micro-nano PBO composite paper with unprecedented mechanical properties and heat resistance. Compos Part A-Appl S. 2022;163: 107243.

    Article  CAS  Google Scholar 

  8. Zhao X, Li W, Wang Y, Li H, Wang J. Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon. 2021;181:40–7.

    Article  CAS  Google Scholar 

  9. Chen Y, Zhang H, Chen J, Guo Y, Jiang P, Gao F, Bao H, Huang X. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano. 2022;16:14323–33.

    Article  CAS  Google Scholar 

  10. Liu Z, Fan X, Han M, Li H, Zhang J, Chen L, Zhu Q, Gu J. Branched Fluorine/adamantane interfacial compatibilizer for PBO Fibers/cyanate ester wave-transparent laminated composites. Chinese J Chem. 2023;41:939–50.

    Article  CAS  Google Scholar 

  11. Gao Y, Wu S, Li C, Xiao Y, Liu J, Zhang B. Hydrogen-bond- and shear-field-induced self-assembly for the efficient preparation of polybenzoxazole nanofibers with excellent mechanical properties and heat resistance. Macromolecules. 2022;55:9420–30.

    Article  CAS  Google Scholar 

  12. Qian Z, Yang M, Li R, Li D, Zhang J, Xiao Y, Li C, Yang R, Zhao N, Xu J. Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. J Mater Chem A. 2018;6:20769–77.

    Article  CAS  Google Scholar 

  13. Gao Y, Wu S, Li C, Xiao Y, Liu J, Zhang B. Homogeneous reinforcement as a strategy for the efficient preparation of high-strength, insulating and high heat-resistant PBO composite paper. J Mater Sci. 2022;57:8701–13.

    Article  CAS  Google Scholar 

  14. Jiang S, Duan G, Chen L, Hu X, Ding Y, Jiang C, Hou H. Thermal, mechanical and thermomechanical properties of tough electrospun poly(imide-co-benzoxazole) nanofiber belts. New J Chem. 2015;39:7797–804.

    Article  CAS  Google Scholar 

  15. Park SH, Kim JH, Moon SJ, Drioli E, Lee YM. Enhanced, hydrophobic, fluorine-containing, thermally rearranged (TR) nanofiber membranes for desalination via membrane distillation. J Membr Sci. 2018;550:545–53.

    Article  CAS  Google Scholar 

  16. Jin J, Hao R, He X, Li G. Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells. Int J Hydrog Energy. 2015;40:14421–7.

    Article  CAS  Google Scholar 

  17. Lee MJ, Kim JH, Lim HS, Lee SY, Yu HK, Kim JH, Lee JS, Sun YK, Guiver MD, Suh KD, Lee YM. Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole. Chem Commun. 2015;51:2068–71.

    Article  CAS  Google Scholar 

  18. Chen M, Frueh J, Wang D, Lin X, Xie H, He Q. Polybenzoxazole nanofiber-reinforced moisture-responsive soft actuators. Sci Rep. 2017;7:769.

    Article  Google Scholar 

  19. Barstugan R, Barstugan M, Ozaytekin I. PBO/graphene added β-PVDF piezoelectric composite nanofiber production. Compos Part B-Eng. 2019;158:141–8.

    Article  CAS  Google Scholar 

  20. Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 2016;16:2981–7.

    Article  CAS  Google Scholar 

  21. Uchida T, Furukawa M. Preparation and properties of rigid PBO polymer nanofibers prepared via crystallization from a dilute solution in sulfuric acid. J Photopolym Sci Technol. 2014;27:177–80.

    Article  Google Scholar 

  22. Chen M, Lin X, Zeng C, He Q. Poly(p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation. Colloids Surf A Physicochem Eng Asp. 2021;612: 125997.

    Article  CAS  Google Scholar 

  23. Tang L, Tang Y, Zhang J, Lin Y, Kong J, Zhou K, Gu J. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci Bull. 2022;67:2196–207.

    Article  CAS  Google Scholar 

  24. Wang Y, Xia S, Xiao G, Di J, Wang J. High-loading boron nitride-based bio-inspired paper with plastic-like ductility and metal-like thermal conductivity. ACS Appl Mater Interfaces. 2020;12:13156–64.

    Article  CAS  Google Scholar 

  25. Yu Z, Wu S, Li C, Xiao Y, Liu J, Zhang B. Mechanically robust fluorinated graphene/poly(p-phenylene benzobisoxazole) nanofiber films with low dielectric constant and enhanced thermal conductivity: Implications for thermal management applications. ACS Appl Nano Mater. 2022;5:18247–55.

    Article  CAS  Google Scholar 

  26. Liu Z, Fan X, Zhang J, Chen L, Tang Y, Kong J, Gu J. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J Mater Sci Technol. 2023;152:16–29.

    Article  Google Scholar 

  27. Chen X, Wu K, Zhang Y, Liu D, Li R, Fu Q. Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3d high thermal conductivity. Adv Mater. 2022;34:2206088.

    Article  CAS  Google Scholar 

  28. Zhang W, Zhang W, Pan YT, Yang R. Facile synthesis of transition metal containing polyhedral oligomeric silsesquioxane complexes with mesoporous structures and their applications in reducing fire hazards, enhancing mechanical and dielectric properties of epoxy composites. J Hazard Mater. 2021;401: 123439.

    Article  CAS  Google Scholar 

  29. Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater. 2013;23:1824–31.

    Article  CAS  Google Scholar 

  30. Zhou D-L, Li J-H, Guo Q-Y, Lin X, Zhang Q, Chen F, Han D, Fu Q. Polyhedral oligomeric silsesquioxanes based ultralow-k materials: The effect of cage size. Adv Funct Mater. 2021;31:2102074.

    Article  CAS  Google Scholar 

  31. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  32. Wang J, Zhou D, Lin X, Li J, Han D, Bai H, Fu Q. Preparation of low-k poly(dicyclopentadiene) nanocomposites with excellent comprehensive properties by adding larger POSS. Chem Eng J. 2022;439: 135737.

    Article  CAS  Google Scholar 

  33. Joseph AM, Nagendra B, Surendran KP, Bhoje GE. Syndiotactic polystyrene/hybrid silica spheres of POSS siloxane composites exhibiting ultralow dielectric constant. ACS Appl Mater Interfaces. 2015;7:19474–83.

    Article  CAS  Google Scholar 

  34. Liu Z, Fan X, Cheng L, Zhang J, Tang L, Tang Y, Kong J, Gu J. Hybrid polymer membrane functionalized PBO fibers/cyanate esters wave-transparent laminated composites. Adv Fiber Mater. 2022;4:520–31.

    Article  CAS  Google Scholar 

  35. Otsuka I, Njinang CN, Borsali R. Simple fabrication of cellulose nanofibers via electrospinning of dissolving pulp and tunicate. Cellulose. 2017;24:3281–8.

    Article  CAS  Google Scholar 

  36. Wu T, Yang F, Tao J, Zhao H, Yu C, Rao W. Design of P-decorated POSS towards flame-retardant, mechanically-strong, tough and transparent epoxy resins. J Colloid Interface Sci. 2023;640:864–76.

    Article  CAS  Google Scholar 

  37. Tang L, Fan X, Tang Y, Zhang J, Kong J, Gu J. Calcia-doped ceria hybrid coating functionalized PBO fibers with excellent UV resistance and improved interfacial compatibility with cyanate ester resins. Appl Surf Sci. 2021;569: 151124.

    Article  CAS  Google Scholar 

  38. Luo Y, Miao Y, Wang H, Dong K, Hou L, Xu Y, Chen W, Zhang Y, Zhang Y, Fan W. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Res. 2023;16:7600–8.

    Article  CAS  Google Scholar 

  39. Wu W, Xu C, Zheng Z, Lin B, Fu L. Strengthened, recyclable shape memory rubber films with a rigid filler nano-capillary network. J Mater Chem A. 2019;7:6901–10.

    Article  CAS  Google Scholar 

  40. Song B, Meng L, Huang Y. Improvement of interfacial property between PBO fibers and epoxy resin by surface grafting of polyhedral oligomeric silsesquioxanes (POSS). Appl Surf Sci. 2012;258:10154–9.

    Article  CAS  Google Scholar 

  41. Ma L, Zhu Y, Wang M, Yang X, Song G, Huang Y. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Compos Sci Technol. 2019;170:148–56.

    Article  CAS  Google Scholar 

  42. Xu Y, Long J, Zhang R, Du Y, Guan S, Wang Y, Huang L, Wei H, Liu L, Huang Y. Greatly improving thermal stability of silicone resins by modification with POSS. Polym Degrad Stab. 2020;174: 109082.

    Article  Google Scholar 

  43. Xian Y, Kang Z. Hydrogen bonds leading nanodiamonds performing different thermal conductance enhancement in different MWCNTs epoxy-based nanocomposites. Prog Org Coat. 2020;140: 105486.

    Article  CAS  Google Scholar 

  44. Hao M, Hu Z, Zhang Y, Qian X, Liu L, Yang J, Wang X, Zhi J, Huang Y, Shi X. Facile preparation of ultraviolet resistant “hard armors” on poly(p-phenylene benzobisoxazole) fibers through heat-induced surface treatment. Polym Degrad Stab. 2022;199: 109896.

    Article  CAS  Google Scholar 

  45. Zhang J, Liu Z, Han M, Zhang J, Tang Y, Gu J. Block copolymer functionalized quartz fibers/cyanate ester wave-transparent laminated composites. J Mater Sci Technol. 2023;139:189–97.

    Article  CAS  Google Scholar 

  46. Zhu Y, Shen Z, Li Y, Chai B, Chen J, Jiang P, Huang X. High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano-Micro Lett. 2022;14:151.

    Article  CAS  Google Scholar 

  47. Hu Z, Wang Y, Liu X, Wang Q, Cui X, Jin S, Yang B, Xia Y, Huang S, Qiang Z, Fu K, Zhang J, Chen Y. Rational design of POSS containing low dielectric resin for SLA printing electronic circuit plate composites. Compos Sci Technol. 2022;223: 109403.

    Article  CAS  Google Scholar 

  48. Dong J, Li L, Qiu P, Pan Y, Niu Y, Sun L, Pan Z, Liu Y, Tan L, Xu X, Xu C, Luo G, Wang Q, Wang H. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv Mater. 2023;35:2211487.

    Article  CAS  Google Scholar 

  49. Zheng Z, Zhang Y. A study of a probe-based millimeter-wave far-field antenna measurement setup. IEEE Antennas Propag M. 2021;63:118–44.

    Article  Google Scholar 

  50. Huang L, Xiao G, Wang Y, Li H, Zhou Y, Jiang L, Wang J. Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 2022;14:168.

    Article  CAS  Google Scholar 

  51. Bi X, Di H, Liu J, Meng Y, Song Y, Meng W, Qu H, Fang L, Song P, Xu J. A core–shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resin (EP). Adv Compos Hybrid Mater. 2022;5:1743–55.

    Article  CAS  Google Scholar 

  52. Liu X, Xiao Y, Luo X, Liu B, Guo D, Chen L, Wang Y. Flame-retardant multifunctional epoxy resin with high performances. Chem Eng J. 2022;427: 132031.

    Article  CAS  Google Scholar 

  53. Yang B, Chen Y, Zhang M, Yuan G. Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/intumescent flame retardant composite system. Compos Part A-Appl S. 2019;123:46–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by the National Natural Science Foundation of China (52373089) and State Key Laboratory of Solidification Processing at the Northwestern Polytechnical University (NPU) (SKLSP202103). Z. Liu thanks the Innovation Foundation for Doctor’s Dissertations of NPU (CX2023026). Y. Lin thanks the Practice and Innovation Funds for Graduate Students of NPU (PF2023034). This work was also financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Tang or Yusheng Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1322 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Fan, X., Tang, L. et al. Polysilsesquioxane-PBO Wave-Transparent Composite Paper with Excellent Mechanical Properties and Ultraviolet Aging Resistance. Adv. Fiber Mater. 5, 2114–2126 (2023). https://doi.org/10.1007/s42765-023-00327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00327-y

Keywords

Navigation