Skip to main content
Log in

Hydrophobic, Hemostatic and Durable Nanofiber Composites with a Screw-Like Surface Architecture for Multifunctional Sensing Electronics

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

MXene-decorated textile composites have attracted tremendous attention, due to their possible applications in wearable sensing electronics. However, the easy oxidation, low strain sensitivity and poor water-proof performance restrict the applications of MXene-based smart textiles. Here, we developed a flexible and hydrophobic polymer nanofibrous composite with a screw-like structure by assembling MXene nanosheets onto a prestretched polyurethane (PU) nanofiber surface and subsequent fluorination treatment. The thin hydrophobic fluorosilane layer can greatly prevent the MXene shell from being oxidized and simultaneously endow the nanofiber composite with good hemostatic performance. The wrinkled MXene shell with the screw-like structure enhances the sensitivity of MXene@PU nanofiber composite (HMPU) toward strain, and the hydrophobic strain sensor exhibits a high gauge factor (324.4 in the strain range of 85–100%), and can detect different human movements. In virtue of its excellent water-proof performance, HMPU can function normally in corrosive and underwater conditions. In addition, the resistance of HMPU exhibits a negative temperature coefficient; thus, HMPU shows potential for monitoring temperature and providing a temperature alarm. The multifunctional HMPU shows broad application prospects in smart wearable electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shu Y, Su T, Lu Q, Shang Z, Xu Q, Hu X. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal Chem. 2021;93:16222.

    Article  CAS  Google Scholar 

  2. Guan F, Han Z, Jin M, Wu Z, Chen Y, Chen S, Wang H. Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv Fiber Mater. 2021;3:128.

    Article  CAS  Google Scholar 

  3. Zheng N, Song Y, Wang L, Gao J-f, Wang Y, Dong X. Improved electrical and mechanical properties for the reduced graphene oxide-decorated polymer nanofiber composite with a core-shell structure. Ind Eng Chem Res. 2019;58:15470.

    Article  CAS  Google Scholar 

  4. Wang L, Huang X, Wang D, Zhang W, Gao S, Luo J, Guo Z, Xue H, Gao J. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range. Chem Eng J. 2021;405: 127025.

    Article  CAS  Google Scholar 

  5. Jia M, Yi C, Han Y, Wang L, Li X, Xu G, He K, Li N, Hou Y, Wang Z, Zhu Y, Zhang Y, Hu M, Sun R, Tong P, Yang J, Hu Y, Wang Z, Li W, Li W, Wei L, Yang C, Chen M. Hierarchical network enabled flexible textile pressure sensor with ultrabroad response range and high-temperature resistance. Adv Sci. 2022;9:2105738.

    Article  CAS  Google Scholar 

  6. Liu H, Huang Z, Chen T, Su X, Liu Y, Fu R. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem Eng J. 2022;427: 131540.

    Article  CAS  Google Scholar 

  7. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B. 2020;268: 118382.

    Article  CAS  Google Scholar 

  8. Li X, Wang C, Cao Y, Wang G. Functional MXene materials: progress of their applications. Chem Asian J. 2018;13:2742.

    Article  CAS  Google Scholar 

  9. Chen T, He P, Liu T, Zhou L, Li M, Yu K, Meng Q, Lian J, Zhu W. MXene-derived 3D defect-rich TiO2@reduced graphene oxide aerogel with ultrafast carrier separation for photo-assisted uranium extraction: a combined batch, x-ray absorption spectroscopy, and density functional theory calculations. Inorg Chem. 2022;61:12759.

    Article  CAS  Google Scholar 

  10. Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev. 2022;467: 214615.

    Article  CAS  Google Scholar 

  11. Ha S, Kim D, Lim H-K, Koo CM, Kim SJ, Yun YS. Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv Funct Mater. 2021;31:2101261.

    Article  CAS  Google Scholar 

  12. Yu K, Jiang P, Wei J, Yuan H, Xin Y, He R, Wang L, Zhu W. Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. J Hazard Mater. 2022;426: 127823.

    Article  CAS  Google Scholar 

  13. Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano. 2021;15:3320.

    Article  CAS  Google Scholar 

  14. Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv Funct Mater. 2020;30:2000739.

    Article  CAS  Google Scholar 

  15. Cheng B, Wu P. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano. 2021;15:8676.

    Article  CAS  Google Scholar 

  16. Zhao X, Wang L-Y, Tang C-Y, Zha X-J, Liu Y, Su B-H, Ke K, Bao R-Y, Yang M-B, Yang W. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano. 2020;14:8793.

    Article  CAS  Google Scholar 

  17. Salauddin M, Rana SMS, Sharifuzzaman M, Rahman MT, Park C, Cho H, Maharjan P, Bhatta T, Park JY. A novel MXene/Ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv Energy Mater. 2021;11:2002832.

    Article  CAS  Google Scholar 

  18. Xiao W, Yan J, Gao S, Huang X, Luo J, Wang L, Zhang S, Wu Z, Lai X, Gao J. Superhydrophobic MXene based fabric composite for high efficiency solar desalination. Desalination. 2022;524: 115475.

    Article  CAS  Google Scholar 

  19. Li X, Hao J, Liu R, He H, Wang Y, Liang G, Liu Y, Yuan G, Guo Z. Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Stor Mater. 2020;33:62.

    Google Scholar 

  20. Zhang X, Wang X, Lei Z, Wang L, Tian M, Zhu S, Xiao H, Tang X, Qu L. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl Mater Interfaces. 2020;12:14459.

    Article  CAS  Google Scholar 

  21. Yang K, Yin F, Xia D, Peng H, Yang J, Yuan W. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale. 2019;11:9949.

    Article  CAS  Google Scholar 

  22. Pu J-H, Zhao X, Zha X-J, Bai L, Ke K, Bao R-Y, Liu Z-Y, Yang M-B, Yang W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J Mater Chem A. 2019;7:15913.

    Article  CAS  Google Scholar 

  23. Xu X, Chen Y, He P, Wang S, Ling K, Liu L, Lei P, Huang X, Zhao H, Cao JJNR. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021;14:2875.

    Article  CAS  Google Scholar 

  24. Wang L, Xia M, Wang D, Yan J, Huang X, Luo J, Xue H-G, Gao J-f. Bioinspired superhydrophobic and durable octadecanoic acid/Ag nanoparticle-decorated rubber composites for high-performance strain sensors. ACS Sustain Chem Eng. 2021;9:7245–9.

    Article  CAS  Google Scholar 

  25. Chertopalov S, Mochalin VN. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano. 2018;12:6109.

    Article  CAS  Google Scholar 

  26. Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MWJAC. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Ed. 2019;131:12785.

    Article  Google Scholar 

  27. Yuan L, Zhang M, Zhao T, Li T, Zhang H, Chen L, Zhang J. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network. Sens Actuator A Phys. 2020;315: 112192.

    Article  CAS  Google Scholar 

  28. Li Y, Zhou B, Shen Y, He C, Wang B, Liu C, Feng Y, Shen C. Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Compos B Eng. 2021;217: 108902.

    Article  CAS  Google Scholar 

  29. Fu X, Li L, Chen S, Xu H, Li J, Shulga V, Han W. Knitted Ti3C2Tx MXene based fiber strain sensor for human–computer interaction. J Colloid Interface Sci. 2021;604:643.

    Article  CAS  Google Scholar 

  30. Han J, Xing W, Yan J, Wen J, Liu Y, Wang Y, Wu Z, Tang L, Gao J. Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv Fiber Mater. 2022;4:1233.

    Article  CAS  Google Scholar 

  31. Gao Q, Feng M, Li E, Liu C, Shen C, Liu X. Mechanical, thermal, and rheological properties of Ti3C2Tx MXene/thermoplastic polyurethane nanocomposites. Macromol Mater Eng. 2020;305:2000343.

    Article  CAS  Google Scholar 

  32. Ronchi RM, Marchiori CFN, Araujo CM, Arantes JT, Santos SF. Thermoplastic polyurethane—Ti3C2(Tx) MXene nanocomposite: the influence of functional groups upon the matrix–reinforcement interaction. Appl Surf Sci. 2020;528: 146526.

    Article  CAS  Google Scholar 

  33. Wang Q, Xiao W, Luo X, Wang L, Gao JJC, Physicochemical SA, Aspects E. Flexible and hydrophobic nanofiber composites with self-enhanced interfacial adhesion for high performance strain sensing and body motion detection. Colloids Surf A Physicochem Eng Asp. 2023;657: 130605.

    Article  CAS  Google Scholar 

  34. Lee Y, Kim SJ, Kim Y-J, Lim Y, Chae Y, Lee B-J, Kim Y-T, Han H, Gogotsi Y, Ahn CW. Oxidation-resistant titanium carbide MXene films. J Mater Chem A. 2020;8:573.

    Article  CAS  Google Scholar 

  35. Li Q, Ding C, Yuan W, Xie R, Zhou X, Zhao Y, Yu M, Yang Z, Sun J, Tian Q, Han F, Li H, Deng X, Li G, Liu Z. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater. 2021;3:302.

    Article  CAS  Google Scholar 

  36. Nie S, Fu Q, Lin X, Zhang C, Lu Y, Wang S. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem Eng J. 2021;404: 126512.

    Article  CAS  Google Scholar 

  37. Huang X, Zhang S, Xiao W, Luo J, Li B, Wang L, Xue H, Gao J. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion. J Membr Sci. 2020;614: 118500.

    Article  CAS  Google Scholar 

  38. Zhang W, Zhao J, Cai C, Qin Y, Meng X, Liu Y, Nie S. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv Sci. 2022;9:2203428.

    Article  CAS  Google Scholar 

  39. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci. 2016;362:406.

    Article  CAS  Google Scholar 

  40. Coffinier Y, Piret G, Das MR, Boukherroub R. Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. C R Chim. 2013;16:65.

    Article  CAS  Google Scholar 

  41. Lin J, Cai X, Liu Z, Liu N, Xie M, Zhou B, Wang H, Guo Z. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie–Baxter wetting state. Adv Funct Mater. 2020;30:2000398.

    Article  CAS  Google Scholar 

  42. Chen K, Zhou J, Che X, Zhao R, Gao Q. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. J Colloid Interface Sci. 2020;566:401.

    Article  CAS  Google Scholar 

  43. Li Z, Milionis A, Zheng Y, Yee M, Codispoti L, Tan F, Poulikakos D, Yap CH. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat Commun. 2019;10:5562.

    Article  CAS  Google Scholar 

  44. Gao P, Fan B, Yu X, Liu W, Wu J, Shi L, Yang D, Tan L, Wan P, Hao Y, Li S, Hou W, Yang K, Li X, Guo Z. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020;5:680.

    Google Scholar 

  45. Wang L, Qiu Y, Lv H, Si Y, Liu L, Zhang Q, Cao J, Yu J, Li X, Ding BJAFM. 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Adv Funct Mater. 2019;29:1901407.

    Article  Google Scholar 

  46. Zhu G-J, Ren P-G, Guo H, Jin Y-L, Yan D-X, Li Z-M. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl Mater Interfaces. 2019;11:23649.

    Article  CAS  Google Scholar 

  47. Li B, Luo J, Huang X, Lin L, Wang L, Hu M, Tang L, Xue H, Gao J, Mai Y-W. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos B Eng. 2020;181: 107580.

    Article  CAS  Google Scholar 

  48. Wang Y, Li W, Zhou Y, Jiang L, Ma J, Chen S, Jerrams S, Zhou F. Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. J Mater Sci. 2020;55:12592.

    Article  CAS  Google Scholar 

  49. Jia Y, Yue X, Wang Y, Yan C, Zheng G, Dai K, Liu C, Shen C. Multifunctional stretchable strain sensor based on polydopamine/ reduced graphene oxide/ electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring. Compos B Eng. 2020;183: 107696.

    Article  CAS  Google Scholar 

  50. Gao J, Li B, Huang X, Wang L, Lin L, Wang H, Xue H. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem Eng J. 2019;373:298.

    Article  CAS  Google Scholar 

  51. Jiang Y, Chen Y, Wang W, Yu D. A wearable strain sensor based on polyurethane nanofiber membrane with silver nanowires/polyaniline electrically conductive dual-network. Colloids Surf A Physicochem Eng Asp. 2021;629: 127477.

    Article  CAS  Google Scholar 

  52. Pan J, Hao B, Song W, Chen S, Li D, Luo L, Xia Z, Cheng D, Xu A, Cai G, Wang X. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn. Compos B Eng. 2020;183: 107683.

    Article  CAS  Google Scholar 

  53. Shaker A, Hassanin AH, Shaalan NM, Hassan MA, El-Moneim AA. Micropatterned flexible strain gauge sensor based on wet electrospun polyurethane/PEDOT: PSS nanofibers. Smart Mater Struct. 2019;28: 075029.

    Article  CAS  Google Scholar 

  54. Xiao W, Wang L, Li B, Li Y, Wang Y, Luo J, Huang X, Xie A, Gao J. Interface-engineered reduced graphene oxide assembly on nanofiber surface for high performance strain and temperature sensing. J Colloid Interface Sci. 2022;608:931.

    Article  CAS  Google Scholar 

  55. Lee J-H, Kim J, Liu D, Guo F, Shen X, Zheng Q, Jeon S, Kim J-K. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv Funct Mater. 2019;29:1901623.

    Article  Google Scholar 

  56. Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17:384.

    Article  CAS  Google Scholar 

  57. Zhao T, Liu H, Yuan L, Tian X, Xue X, Li T, Yin L, Zhang J. A multi-responsive mxene-based actuator with integrated sensing function. Adv Mater Interfaces. 2022;9:2101948.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2022YFB3808000/2022YFB3808001), Natural Science Foundation of China (No. 51873178, No.21673203), the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2020-4-03), Qing Lan Project of Yangzhou University and Jiangsu Province, High-end Talent Project of Yangzhou University and the Project for High-Level Talent Innovation and Entrepreneurship of Quanzhou (Grant No. 2022C016R).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhang or Jiefeng Gao.

Ethics declarations

Conflict of interest

Jiefeng Gao is an editorial board member/editor-in-chief for [Advanced Fiber Materials] and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1288 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Chen, Y., Pan, G. et al. Hydrophobic, Hemostatic and Durable Nanofiber Composites with a Screw-Like Surface Architecture for Multifunctional Sensing Electronics. Adv. Fiber Mater. 5, 2040–2054 (2023). https://doi.org/10.1007/s42765-023-00324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00324-1

Keywords

Navigation