Skip to main content
Log in

Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stretchable and sensitive fiber-shaped strain sensor with stable sensing performance is highly desirable for wearable electronics. However, it is still a challenge to simply and economically fabricate such strain sensors in large scale for practical applications. Herein, we report a strain sensor based on a thermoplastic polyurethane (TPU) layer encapsulated core–sheath single-walled carbon nanotube (SWCNT)-reduced graphene oxide (RGO)/PU composite fiber through a dip-coating process. The synergistic effect between SWCNT and RGO contributes to the formation of a highly sensitive and conductive layer on elastic PU core, while the outmost TPU layer protects the conductive layer against abrasion or delamination. The results demonstrate that the fiber sensor with 50 wt% RGO in the conductive layer simultaneously exhibits a wide sensing range of 465%, a high gauge factor (GF) up to 114.7, and good cyclic stability for more than 1000 stretching cycles. Importantly, the fiber sensor shows high stability with little change in conductivity even by harsh treatment in ultrasonic bath for 250 min. The applications of our fiber sensor in monitoring human motions like elbow bending, phonation, pulse, and underwater sensing are also demonstrated. The reported fiber strain sensor provides a good candidate for next-generation intelligent wearable devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Amjadi M, Kyung K, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698. https://doi.org/10.1002/adfm.201504755

    Article  CAS  Google Scholar 

  2. Lee J, Shin S, Lee S, Song J, Kang S, Han H, Kim S, Kim S, Seo J, Kim D, Lee T (2018) Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12:4259–4268. https://doi.org/10.1021/acsnano.7b07795

    Article  CAS  Google Scholar 

  3. Meng Q, Wu H, Mao L, Yuan H, Ahmad A, Wei Z (2017) Combining electrode flexibility and wave-like device architecture for highly flexible Li-ion batteries. Adv Mater Technol 2:1–7. https://doi.org/10.1002/admt.201700032

    Article  CAS  Google Scholar 

  4. Wang L, Zhang Y, Pan J, Peng H (2016) Stretchable lithium-air batteries for wearable electronics. J Mater Chem A 4:13419–13424. https://doi.org/10.1039/c6ta05800k

    Article  CAS  Google Scholar 

  5. Kim H, Yoon J, Lee G, Paik S, Choi G, Kim D, Kim B, Zi G, Ha J (2016) Encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors as waterproof wearable energy storage devices. ACS Appl Mater Interfaces 8:16016–16025. https://doi.org/10.1021/acsami.6b03504

    Article  CAS  Google Scholar 

  6. Li X, Wang J, Zhao Y, Ge F, Komarneni S, Cai Z (2016) Wearable solid-state supercapacitors operating at high working voltage with a flexible nanocomposite electrode. ACS Appl Mater Interfaces 8:25905–25914. https://doi.org/10.1021/acsami.6b06156

    Article  CAS  Google Scholar 

  7. Lee S, Choi K, Kim S, Lee S (2018) Wearable supercapacitors printed on garments. Adv Funct Mater 28:1–10. https://doi.org/10.1002/adfm.201705571

    Article  CAS  Google Scholar 

  8. Wang X, Sun H, Yue X, Yu Y, Zheng G, Dai K, Liu C, Shen C (2018) A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos Sci Technol 168:126–132. https://doi.org/10.1016/j.compscitech.2018.09.006

    Article  CAS  Google Scholar 

  9. Zhu G, Ren P, Guo H, Jin Y, Yan D, Li Z (2019) Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl Mater Interfaces 11:23649–23658. https://doi.org/10.1021/acsami.9b08611

    Article  CAS  Google Scholar 

  10. Wang Z, Huang Y, Sun J, Huang Y, Hu H, Jiang R, Gai W, Li G, Zhi C (2016) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8:24837–24843. https://doi.org/10.1021/acsami.6b08207

    Article  CAS  Google Scholar 

  11. Ma L, Yang W, Wang Y, Chen H, Xing Y, Wang J (2018) Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Compos Sci Technol 165:190–197. https://doi.org/10.1016/j.compscitech.2018.06.030

    Article  CAS  Google Scholar 

  12. Liu Q, Zhang M, Huang L, Li Y, Chen J, Li C, Shi G (2015) High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9:12320–12326. https://doi.org/10.1021/acsnano.5b05609

    Article  CAS  Google Scholar 

  13. Yin B, Wen Y, Hong T, Xie Z, Yuan G, Ji Q (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9:32054–32064. https://doi.org/10.1021/acsami.7b09652

    Article  CAS  Google Scholar 

  14. Karim N, Afroj S, Tan S, Pei He, Fernando A, Carr C, Novoselov K (2017) Scalable production of graphene-based wearable E-textiles. ACS Nano 11:12266–12275. https://doi.org/10.1021/acsnano.7b05921

    Article  CAS  Google Scholar 

  15. Meng Q, Liu Z, Han S, Xu L, Araby S, Cai R, Zhao Y, Lu S, Liu T (2019) A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film. J Mater Sci 54:10856–10870. https://doi.org/10.1007/s10853-019-03650-1

    Article  CAS  Google Scholar 

  16. Wu X, Han Y, Zhang X, Zhou Z, Lu C (2016) Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv Funct Mater 26:6246–6256. https://doi.org/10.1002/adfm.201601995

    Article  CAS  Google Scholar 

  17. Chen Y, Wang L, Wu Z, Luo J, Li B, Huang X, Xue H, Gao J (2019) Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. Compos Part B Eng 176:107358. https://doi.org/10.1016/j.compositesb.2019.107358

    Article  CAS  Google Scholar 

  18. Shin M, Lee B, Kim S, Lee J, Spinks G, Gambhir S, Wallace G, Kozlov M, Baughman R, Kim S (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun 3:650. https://doi.org/10.1038/ncomms1661

    Article  CAS  Google Scholar 

  19. Li L, Xu L, Ding W, Lu H, Zhang C, Liu T (2019) Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness. Compos Part B Eng 177:107381. https://doi.org/10.1016/j.compositesb.2019.107381

    Article  CAS  Google Scholar 

  20. Yang Y, Shi L, Cao Z, Wang R, Sun J (2019) Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv Funct Mater 29:1807882. https://doi.org/10.1002/adfm.201807882

    Article  CAS  Google Scholar 

  21. Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989. https://doi.org/10.1039/C6NR02216B

    Article  CAS  Google Scholar 

  22. Zheng Y, Li Y, Dai K, Wang Y, Zheng G, Liu C, Shen C (2018) A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos Sci Technol 156:276–286. https://doi.org/10.1016/j.compscitech.2018.01.019

    Article  CAS  Google Scholar 

  23. Yang H, Gong L, Zheng Z, Yao X (2020) Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes. Carbon 158:893–903. https://doi.org/10.1016/j.carbon.2019.11.079

    Article  CAS  Google Scholar 

  24. Shi J, Hu J, Dai Z, Zhao W, Liu P, Zhao L, Guo Y, Yang T, Zou L, Jiang K, Li H, Fang Y (2017) Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon 123:786–793. https://doi.org/10.1016/j.carbon.2017.08.006

    Article  CAS  Google Scholar 

  25. Huang J, Her S, Yang X, Zhi M (2018) Synthesis and characterization of multi-walled carbon nanotube/graphene nanoplatelet hybrid film for flexible strain sensors. Nanomaterials 8:786. https://doi.org/10.3390/nano8100786

    Article  CAS  Google Scholar 

  26. Kim S, Song W, Yi Y, Min B, Mondal S, An K, Choi C (2018) High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl Mater Interfaces 10:3921–3928. https://doi.org/10.1021/acsami.7b15386

    Article  CAS  Google Scholar 

  27. Zhang F, Wu S, Peng S, Sha Z, Wang C (2019) Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos Sci Technol 172:7–16. https://doi.org/10.1016/j.compscitech.2018.12.031

    Article  CAS  Google Scholar 

  28. Tang Z, Yao D, Du D, Ouyang J (2020) Highly machine-washable e-textiles with high strain sensitivity and high thermal conduction. J Mater Chem C 8:2741–2748. https://doi.org/10.1039/C9TC06155J

    Article  CAS  Google Scholar 

  29. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163. https://doi.org/10.1021/nn501204t

    Article  CAS  Google Scholar 

  30. Tang D, Wang Q, Wang Z, Liu Q, Zhang B, He D, Wu Z, Mu S (2018) Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. Sci Bull 63:574–579. https://doi.org/10.1016/j.scib.2018.03.014

    Article  CAS  Google Scholar 

  31. Chen L, Weng M, Zhou P, Huang F, Liu C, Fan S, Zhang W (2019) Graphene-based actuator with integrated-sensing function. Adv Funct Mater 29:1–9. https://doi.org/10.1002/adfm.201806057

    Article  CAS  Google Scholar 

  32. Chen J, Zhu Y, Jiang W (2020) A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos Sci Technol 186:107938. https://doi.org/10.1016/j.compscitech.2019.107938

    Article  CAS  Google Scholar 

  33. Lee H, Glasper M, Li X, Nychka J, Batcheller J, Chung H, Chen Y (2018) Preparation of fabric strain sensor based on graphene for human motion monitoring. J Mater Sci 53:9026–9033. https://doi.org/10.1007/s10853-018-2194-7

    Article  CAS  Google Scholar 

  34. Park T, Yu S, Koo M, Kim H, Kim E, Park J, Ok B, Kim B, Noh S, Park C, Kim E, Koo C, Park C (2019) Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13:6835–6844. https://doi.org/10.1021/acsnano.9b01602

    Article  CAS  Google Scholar 

  35. Zhao K, Niu W, Zhang S (2020) Highly stretchable, breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics. J Mater Sci 55:2439–2453. https://doi.org/10.1007/s10853-019-04189-x

    Article  CAS  Google Scholar 

  36. Wu R, Ma L, Patil A, Meng Z, Liu S, Hou C, Zhang Y, Yu W, Guo W, Liu X (2020) Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J Mater Chem A 8:12665–12673. https://doi.org/10.1039/D0TA02221G

    Article  CAS  Google Scholar 

  37. Yun Y, Hong W, Kim W, Jun Y, Kim B (2013) A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv Mater 25:5701–5705. https://doi.org/10.1002/adma.201303225

    Article  CAS  Google Scholar 

  38. Jeon J, Cho S, Jeong Y, Shin D, Kim N, Yun Y, Kim H, Choi S, Hong W, Kim H, Jin H, Kim B (2017) Pyroprotein-based electronic textiles with high stability. Adv Mater 29:1605479. https://doi.org/10.1002/adma.201605479

    Article  CAS  Google Scholar 

  39. Ren M, Zhou Y, Wang Y, Zheng G, Dai K, Liu C, Shen C (2019) Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem Eng J 360:762–777. https://doi.org/10.1016/j.cej.2018.12.025

    Article  CAS  Google Scholar 

  40. Wang L, Tian M, Zhang Y, Sun F, Qi X, Liu Y, Qu L (2020) Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer. J Mater Sci 55:6187–6194. https://doi.org/10.1007/s10853-020-04425-9

    Article  CAS  Google Scholar 

  41. Cai G, Yang M, Pan J, Cheng D, Xia Z, Wang X, Tang B (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10:32726–32735. https://doi.org/10.1021/acsami.8b11885

    Article  CAS  Google Scholar 

  42. Afroj S, Karim N, Wang Z, Tan S, He P, Holwill M, Ghazaryan D, Fernando A, Novoselow K (2019) Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 13:3847–3857. https://doi.org/10.1021/acsnano.9b00319

    Article  CAS  Google Scholar 

  43. Yang Z, Pang Y, Han X, Yang Y, Ling J, Jian M, Zhang Y, Yang Y, Ren T (2018) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12:9134–9141. https://doi.org/10.1021/acsnano.8b03391

    Article  CAS  Google Scholar 

  44. Xie X, Huang H, Zhu J, Yu J, Wang Y, Hu Z (2020) A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor. Compos Part A Appl Sci Manuf 135:105932. https://doi.org/10.1016/j.compositesa.2020.105932

    Article  CAS  Google Scholar 

  45. Liao X, Liao Q, Zhang Z, Yan X, Liang Q, Wang Q, Li M, Zhang Y (2016) A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv Funct Mater 26:3074–3081. https://doi.org/10.1002/adfm.201505223

    Article  CAS  Google Scholar 

  46. Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y, Li B (2018) Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl Mater Interfaces 10:6624–6635. https://doi.org/10.1021/acsami.7b18677

    Article  CAS  Google Scholar 

  47. Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28:6640–6648. https://doi.org/10.1002/adma.201601572

    Article  CAS  Google Scholar 

  48. Wang C, Xia K, Jian M, Wang H, Zhang M, Zhang Y (2017) Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J Mater Chem C 5:7604–7611. https://doi.org/10.1039/c7tc01962a

    Article  CAS  Google Scholar 

  49. Zhou J, Xu X, Xin Y, Lubineau G (2018) Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv Funct Mater 28:1–8. https://doi.org/10.1002/adfm.201705591

    Article  CAS  Google Scholar 

  50. Montazerian H, Rashidi A, Dalili A, Najjaran H, Milani A, Hoorfar M (2019) Graphene-coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications. Small 15:1804991. https://doi.org/10.1002/smll.201804991

    Article  CAS  Google Scholar 

  51. Liu Y, Wu F, Zhao X, Liu M (2018) High-performance strain sensors based on spirally structured composites with carbon black, chitin nanocrystals, and natural rubber. ACS Sustain Chem Eng 6:10595–10605. https://doi.org/10.1021/acssuschemeng.8b01933

    Article  CAS  Google Scholar 

  52. Wu X, Han Y, Zhang X, Lu C (2017) Spirally structured conductive composites for highly stretchable, robust conductors and sensors. ACS Appl Mater Interfaces 9:23007–23016. https://doi.org/10.1021/acsami.7b06256

    Article  CAS  Google Scholar 

  53. Pan J, Yang M, Luo L, Xu A, Tang B, Cheng D, Cai G, Wang X (2019) Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl Mater Interfaces 11:7338–7348. https://doi.org/10.1021/acsami.8b18823

    Article  CAS  Google Scholar 

  54. Li L, Xiang H, Xiong Y, Zhao H, Bai Y, Wang S, Sun F, Hao M, Liu L, Li T, Peng Z, Xu J, Zhang T (2018) Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine. Adv Sci 5:1800558. https://doi.org/10.1002/advs.201800558

    Article  CAS  Google Scholar 

  55. Lion A (1996) A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation. Contin Mech Thermodyn 8:153–169. https://doi.org/10.1007/BF01181853

    Article  Google Scholar 

  56. Liu C, Choi J (2010) Strain-dependent resistance of PDMS and carbon nanotubes composite microstructures. IEEE Trans Nanotechnol 9:590–595. https://doi.org/10.1109/TNANO.2010.2060350

    Article  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Shanghai (Grant No. 17ZR1401100) and the Fundamental Research Funds for the Central Universities (Grant No. 2232019D3-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Huang or Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xie, X., Huang, H. et al. Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J Mater Sci 56, 2296–2310 (2021). https://doi.org/10.1007/s10853-020-05394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05394-9

Navigation