Skip to main content

Advertisement

Log in

Advances in Nonwoven-Based Separators for Lithium-Ion Batteries

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) are energy-storage devices with a high-energy density in which the separator provides a physical barrier between the cathode and anode, to prevent electrical short circuits. To meet the demands of high-performance batteries, the separator must have excellent electrolyte wettability, thermotolerance, mechanical strength, highly porous structures, and ionic conductivity. Numerous nonwoven-based separators have been used in LIBs due to their high porosity and large surface-to-volume ratios. However, the fabrication of multi-functional fibers, the construction of nonwoven separators, and their integration into energy-storage devices present grand challenges in fundamental theory and practical implementation. Herein, we systematically review the up-to-date concerning the design and preparation of nonwoven-based separators for LIBs. Recent progress in monolayer, composite, and solid electrolyte nonwoven-based separators and their fabrication strategies is discussed. Future challenges and directions toward advancements in separator technologies are also discussed to obtain separators with remarkable performance for high-energy density batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission Ref. [4]. Copyright 2019 Elsevier

Fig. 4

Reprinted with permission from ref. [95] Copyright 2023 Elsevier

Fig. 5

Reprinted with permission from Ref. [49]. Copyright 2017 American Chemical Society

Fig. 6
Fig. 7

Reprinted with permission from Ref. [127] Copyright 2020 Elsevier B.V

Fig. 8

Reprinted with permission from Ref. [56] Copyright 2020 Elsevier B.V

Fig. 9

Reprinted with permission from Ref. [135] Copyright 2018 American Chemical Society

Fig. 10

Reprinted with permission from Ref. [137] Copyright 2015 Royal Society of Chemistry

Fig. 11

Reprinted with permission from Ref. [149] Copyright 2021 Nature

Similar content being viewed by others

References

  1. Liu Z, Jiang Y, Hu Q, Guo S, Yu L, Li Q, Liu Q, Hu X. Safer lithium-ion batteries from the separator aspect: development and future perspectives. Energy Environ Mater. 2020. https://doi.org/10.1002/eem2.12129.

    Article  Google Scholar 

  2. Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev. 2007;11:1388.

    Article  Google Scholar 

  3. Xiao P, Yang W, Qiu N, Li S, Ni F, Zhang C, Gu J, Kuo S-W, Chen T. Engineering biomimetic nanostructured “melanosome” textiles for advanced solar-to-thermal devices. Nano Lett. 2022;22:9343.

    Article  CAS  Google Scholar 

  4. Zhang H, Zhen Q, Liu Y, Liu R, Zhang Y. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks. Results Phys. 2019;12:1421.

    Article  Google Scholar 

  5. Yang W, Xiao P, Li S, Deng F, Ni F, Zhang C, Gu J, Yang J, Kuo SW, Geng F, Chen T. Engineering structural Janus MXene-nanofibrils aerogels for season-adaptive radiative thermal regulation. Small. 2023;26: e2302509.

    Article  Google Scholar 

  6. Cao X, Ma C, Luo L, Chen L, Cheng H, Orenstein RS, Zhang X. Nanofiber materials for lithium-ion batteries. Adv Fiber Mater. 2023;2023:652.

    Google Scholar 

  7. Mohtadi R, Tutusaus O, Arthur TS, Zhao-Karger Z, Fichtner M. The metamorphosis of rechargeable magnesium batteries. Joule. 2021;5:581.

    Article  CAS  Google Scholar 

  8. Wang H-F, Xu Q. Materials design for rechargeable metal-air batteries. Matter. 2019;1:565.

    Article  CAS  Google Scholar 

  9. Yang W, Xiao P, Ni F, Zhang C, Gu J, Kuo S-W, Liu Q, Chen T. Biomass-derived nanostructured coatings based on cellulose nanofibers-melanin hybrids toward solar-enabled multifunctional energy management. Nano Energy. 2022;97: 107180.

    Article  CAS  Google Scholar 

  10. Zhang X, Jiao S, Tu J, Song W-L, Xiao X, Li S, Wang M, Lei H, Tian D, Chen H, Fang D. Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy Environ Sci. 2019;12:1918.

    Article  CAS  Google Scholar 

  11. Zhu G, Tian X, Tai HC, Li YY, Li J, Sun H, Liang P, Angell M, Huang CL, Ku CS, Hung WH, Jiang SK, Meng Y, Chen H, Lin MC, Hwang BJ, Dai H. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature. 2021;596:525.

    Article  CAS  Google Scholar 

  12. Zhou Z, Li P, Man Z, Zhu X, Ye S, Lu W, Wu G, Chen W. Multiscale dot-wire-sheet heterostructured nitrogen-doped carbon dots-Ti3C2Tx/silk nanofibers for high-performance fiber-shaped supercapacitors. Angew Chem Int Ed Engl. 2023;62: e202301618.

    Article  CAS  Google Scholar 

  13. Zhou Y, Wang CH, Lu W, Dai L. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv Mater. 2020;32: e1902779.

    Article  Google Scholar 

  14. Johnson CS. Charging up lithium-ion battery cathodes. Joule. 2018;2:373.

    Article  Google Scholar 

  15. Lu J, Wu T, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat Energy. 2017;2:17011.

    Article  CAS  Google Scholar 

  16. Lagadec MF, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nat Energy. 2018;4:16.

    Article  Google Scholar 

  17. Zhang X, Sun Q, Zhen C, Niu Y, Han Y, Zeng G, Chen D, Feng C, Chen N, Lv W, He W. Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy Storage Mater. 2021;37:628.

    Article  Google Scholar 

  18. Li J, Zhang X, Lu Y, Hu K, Wang C, Ma Z, He X. Electrospun fluorinated polyimide/polyvinylidene fluoride composite membranes with high thermal stability for lithium ion battery separator. Adv Fiber Mater. 2022;4:108.

    Article  CAS  Google Scholar 

  19. Ren W, Zheng Y, Cui Z, Tao Y, Li B, Wang W. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 2021;35:157.

    Article  Google Scholar 

  20. Song YH, Wu KJ, Zhang TW, Lu LL, Guan Y, Zhou F, Wang XX, Yin YC, Tan YH, Li F, Tian T, Ni Y, Yao HB, Yu SH. A nacre-inspired separator coating for impact-tolerant lithium batteries. Adv Mater. 2019;31: e1905711.

    Article  Google Scholar 

  21. Dai J, Shi C, Li C, Shen X, Peng L, Wu D, Sun D, Zhang P, Zhao J. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energ Environ Sci. 2016;9:3252.

    Article  CAS  Google Scholar 

  22. Rahman MM, Mateti S, Cai Q, Sultana I, Fan Y, Wang X, Hou C, Chen Y. High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Mater. 2019;19:352.

    Article  Google Scholar 

  23. Wang Z, Pan R, Xu C, Ruan C, Edström K, Strømme M, Nyholm L. Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Mater. 2018;13:283.

    Article  Google Scholar 

  24. Li X, Tao J, Hu D, Engelhard MH, Zhao W, Zhang J-G, Xu W. Stability of polymeric separators in lithium metal batteries in a low voltage environment. J Mater Chem A. 2018;6:5006.

    Article  CAS  Google Scholar 

  25. Lin D, Zhuo D, Liu Y, Cui Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc. 2016;138:11044.

    Article  CAS  Google Scholar 

  26. Mu X, Zhou X, Wang W, Xiao Y, Liao C, Longfei H, Kan Y, Song L. Design of compressible flame retardant grafted porous organic polymer based separator with high fire safety and good electrochemical properties. Chem Eng J. 2021;405: 126946.

    Article  CAS  Google Scholar 

  27. Ryu J, Han D-Y, Hong D, Park S. A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. Energy Storage Mater. 2022;45:941.

    Article  Google Scholar 

  28. Wang K, Huang L, Razzaque S, Jin S, Tan B. Fabrication of hollow microporous carbon spheres from hyper-crosslinked microporous polymers. Small. 2016;12:3134.

    Article  CAS  Google Scholar 

  29. Yang H, Shi X, Chu S, Shao Z, Wang Y. Design of block-copolymer nanoporous membranes for robust and safer lithium-ion battery separators. Adv Sci (Weinh). 2021;8:2003096.

    Article  CAS  Google Scholar 

  30. Yu J, Dong N, Liu B, Tian G, Qi S, Wu D. A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery. Chem Eng J. 2022;442: 136314.

    Article  CAS  Google Scholar 

  31. Peng K, Wang B, Ji C. A poly(ethylene terephthalate) nonwoven sandwiched electrospun polysulfonamide fibrous separator for rechargeable lithium ion batteries. J Appl Polym Sci. 2017;134:44907.

    Article  Google Scholar 

  32. Xiang H, Chen J, Li Z, Wang H. An inorganic membrane as a separator for lithium-ion battery. J Power Sources. 2011;196:8651.

    Article  CAS  Google Scholar 

  33. He M, Zhang X, Jiang K, Wang J, Wang Y. Pure inorganic separator for lithium ion batteries. ACS Appl Mater interfaces. 2015;7:738.

    Article  CAS  Google Scholar 

  34. Chi M, Shi L, Wang Z, Zhu J, Mao X, Zhao Y, Zhang M, Sun L, Yuan S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy. 2016;28:1.

    Article  CAS  Google Scholar 

  35. Wang M, Chen X, Wang H, Wu H, Jin X, Huang C. Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J Mater Chem A. 2017;5:311.

    Article  CAS  Google Scholar 

  36. Xiao J, Zhai P, Wei Y, Zhang X, Yang W, Cui S, Jin C, Liu W, Wang X, Jiang H, Luo Z, Zhang X, Gong Y. In-situ formed protecting layer from organic/inorganic concrete for dendrite-free lithium metal anodes. Nano Lett. 2020;20:3911.

    Article  CAS  Google Scholar 

  37. Lizundia E, Kundu D. Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv Funct Mater. 2020;31:2005646.

    Article  Google Scholar 

  38. Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A. 2016;4:10038.

    Article  CAS  Google Scholar 

  39. Ji X, Hou S, Wang P, He X, Piao N, Chen J, Fan X, Wang C. Solid-state electrolyte design for lithium dendrite suppression. Adv Mater. 2020;32: e2002741.

    Article  Google Scholar 

  40. Meng N, Lian F, Cui G. Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries. Small. 2021;17: e2005762.

    Article  Google Scholar 

  41. Zhou D, Liu R, He Y-B, Li F, Liu M, Li B, Yang Q-H, Cai Q, Kang F. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv Energy Mater. 2016;6:1502214.

    Article  Google Scholar 

  42. Zhu J, Li X, Wu C, Gao J, Xu H, Li Y, Guo X, Li H, Zhou W. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew Chem Int Ed Engl. 2021;60:3781.

    Article  CAS  Google Scholar 

  43. Li H, Wu D, Wu J, Dong LY, Zhu YJ, Hu X. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater. 2017;29:1703548.

    Article  Google Scholar 

  44. Kim JK, Kim DH, Joo SH, Choi B, Cha A, Kim KM, Kwon TH, Kwak SK, Kang SJ, Jin J. Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano. 2017;11:6114.

    Article  CAS  Google Scholar 

  45. Gong YJ, Heo JW, Lee H, Kim H, Cho J, Pyo S, Yun H, Kim H, Park SY, Yoo J, Kim YS. Nonwoven rGO fiber-aramid separator for high-speed charging and discharging of Li metal anode. Adv Energy Mater. 2020;10:2001479.

    Article  CAS  Google Scholar 

  46. Pan R, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy. 2019;55:316.

    Article  CAS  Google Scholar 

  47. Liao C, Mu X, Han L, Li Z, Zhu Y, Lu J, Wang H, Song L, Kan Y, Hu Y. A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries. Energy Storage Mater. 2022;48:123.

    Article  Google Scholar 

  48. Liu Z, Hu Q, Guo S, Yu L, Hu X. Thermoregulating separators based on phase-change materials for safe lithium-ion batteries. Adv Mater. 2021;33: e2008088.

    Article  Google Scholar 

  49. Zhang TW, Shen B, Yao HB, Ma T, Lu LL, Zhou F, Yu SH. Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries. Nano Lett. 2017;17:4894.

    Article  CAS  Google Scholar 

  50. Yu Y, Xiong S, Huang H, Zhao L, Nie K, Chen S, Xu J, Yin X, Wang H, Wang L. Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React Funct Polym. 2020;150: 104539.

    Article  CAS  Google Scholar 

  51. Yu Y, Liu M, Huang H, Zhao L, Lin P, Huang S, Xu J, Wang H, Wang L. Low cost fabrication of polypropylene fiber composite membrane with excellent mechanical, superhydrophilic, antifouling and antibacterical properties for effective oil-in-water emulsion separation. React Funct Polym. 2019;142:15.

    Article  CAS  Google Scholar 

  52. Yu Y, Ren L, Liu M, Huang S, Xiao X, Liu R, Wang L, Xu W. Polyphenylene sulfide ultrafine fibrous membrane modified by nanoscale ZIF-8 for highly effective adsorption, interception, and recycling of iodine vapor. ACS Appl Mater Interfaces. 2019;11:31291.

    Article  CAS  Google Scholar 

  53. Wang H, Zhang Y, Gao H, Jin X, Xie X. Composite melt-blown nonwoven fabrics with large pore size as Li-ion battery separator. Internat J Hydrogen Energ. 2016;41:324.

    Article  CAS  Google Scholar 

  54. Luo D, Chen M, Xu J, Yin X, Wu J, Chen S, Wang L, Wang H. Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos Sci Technol. 2018;157:119.

    Article  CAS  Google Scholar 

  55. Luiso S, Henry JJ, Pourdeyhimi B, Fedkiw PS. Meltblown polyvinylidene difluoride as a Li-ion battery separator. ACS Appl Polym Mater. 2021;3:3038.

    Article  CAS  Google Scholar 

  56. Zhang J, Zhu C, Xu J, Wu J, Yin X, Chen S, Zhu Z, Wang L, Li Z-C. Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface. J Membr Sci. 2020;597: 117622.

    Article  CAS  Google Scholar 

  57. Li X, Chen W, Qian Q, Huang H, Chen Y, Wang Z, Chen Q, Yang J, Li J, Mai YW. Electrospinning-based strategies for battery materials. Adv Energy Mater. 2020;11:2000845.

    Article  Google Scholar 

  58. Deng J, Cao D, Yang X, Zhang G. Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application. Chem Eng J. 2022;433: 133934.

    Article  CAS  Google Scholar 

  59. Zhang X, Chen Y, Ma F, Chen X, Wang B, Wu Q, Zhang Z, Liu D, Zhang W, He J, Xu Z-L. Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem Eng J. 2022;436: 134945.

    Article  CAS  Google Scholar 

  60. Dong T, Arifeen WU, Choi J, Yoo K, Ko T. Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem Eng J. 2020;398: 125646.

    Article  CAS  Google Scholar 

  61. Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Letter. 2016;16:2981.

    Article  CAS  Google Scholar 

  62. Zhang TW, Chen JL, Tian T, Shen B, Peng YD, Song YH, Jiang B, Lu LL, Yao HB, Yu SH. Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications. Adv Funct Mater. 2019;29:1902023.

    Article  Google Scholar 

  63. Kang SH, Jang J-K, Jeong HY, So S, Hong S-K, Hong YT, Yoon SJ, Yu DM. Polyacrylonitrile/phosphazene composite-based heat-resistant and flame-retardant separators for safe lithium-ion batteries. ACS Appl Energy Mater. 2022;5:2452.

    Article  CAS  Google Scholar 

  64. Qiu Z, Yuan S, Wang Z, Shi L, Jo JH, Myung S-T, Zhu J. Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators realizing multifunction for high-performance lithium ion batteries. J Power Sources. 2020;472: 228445.

    Article  CAS  Google Scholar 

  65. Zhang H, Zhao H, Khan MA, Zou W, Xu J, Zhang L, Zhang J. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J Mater Chem A. 2018;6:20564.

    Article  CAS  Google Scholar 

  66. Kwon SJ, Park S-H, Park MS, Lee JS, Lee J-H. Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators. J Membr Sci. 2017;544:213.

    Article  CAS  Google Scholar 

  67. Dong N, Wang J, Chen N, Liu B, Tian G, Qi S, Sun G, Wu D. In Situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain Chem Eng. 2021;9:6250.

    Article  CAS  Google Scholar 

  68. Yang Y, Huang X, Cao Z, Chen G. Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy. 2016;22:301.

    Article  CAS  Google Scholar 

  69. Orendorff CJ, Lambert TN, Chavez CA, Bencomo M, Fenton KR. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv Energy Mater. 2013;3:314.

    Article  CAS  Google Scholar 

  70. Zhang S, Wang M, Zhou Z, Tang Y. Multifunctional electrode design consisting of 3D porous separator modulated with patterned anode for high-performance dual-ion batteries. Adv Funct Mater. 2017;27:1703035.

    Article  Google Scholar 

  71. Jeong J, Lee J, Kim J, Chun J, Kang D, Han SM, Jo C, Lee J. A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. J Mater Chem A. 2021;9:7774.

    Article  CAS  Google Scholar 

  72. Zhang X, Cheng S, Huang X, Logan BE. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ Sci. 2010;3:659.

    Article  CAS  Google Scholar 

  73. Zhu X, Ouyang Y, Chen J, Zhu X, Luo X, Lai F, Zhang H, Miao Y-E, Liu T. In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries. J Mater Chem A. 2019;7:3253.

    Article  CAS  Google Scholar 

  74. Li Y, Li Q, Tan Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources. 2019;443: 227262.

    Article  CAS  Google Scholar 

  75. Nie Z, Zhang H, Lu Y, Han C, Du Y, Sun Z, Yan Y, Yu H, Zhang X, Zhu J. Manipulation of porosity and electrochemical artificial separator interphase for durable lithium-sulfur batteries. Chem Eng J. 2021;409: 128137.

    Article  CAS  Google Scholar 

  76. Zeng X, Liu Y, He R, Li T, Hu Y, Wang C, Xu J, Wang L, Wang H. Tissue paper-based composite separator using nano-SiO2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability. Cellulose. 2022;29:3985.

    Article  CAS  Google Scholar 

  77. Song Q, Li A, Shi L, Qian C, Feric TG, Fu Y, Zhang H, Li Z, Wang P, Li Z, Zhai H, Wang X, Dontigny M, Zaghib K, Park A-H, Myers K, Chuan X, Yang Y. Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries. Energy Storage Mater. 2019;22:48.

    Article  Google Scholar 

  78. Chinnam PR, Chatare V, Chereddy S, Mantravadi R, Gau M, Schwab J, Wunder SL. Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. J Mater Chem A. 2016;4:14380.

    Article  CAS  Google Scholar 

  79. Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA. Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci. 2013;427:336.

    Article  CAS  Google Scholar 

  80. Tan DH, Zhou C, Ellison CJ, Kumar S, Macosko CW, Bates FS. Meltblown fibers: Influence of viscosity and elasticity on diameter distribution. J Non-Newton Fluid Mechan. 2010;165:892.

    Article  CAS  Google Scholar 

  81. Zuo F, Tan DH, Wang Z, Jeung S, Macosko CW, Bates FS. Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2013;2:301.

    Article  CAS  Google Scholar 

  82. Lu W, Sun J, Jiang X. Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J Mater Chem B. 2014;2:2369.

    Article  CAS  Google Scholar 

  83. Min TT, Zhou LP, Sun XL, Du HY, Zhu Z, Wen YQ. Electrospun functional polymeric nanofibers for active food packaging: a review. Food Chem. 2022;15: 133239.

    Article  Google Scholar 

  84. Jia S, Yang S, Zhang M, Huang K, Long J, Xiao J. Eco-friendly xonotlite nanowires/wood pulp fibers ceramic hybrid separators through a simple papermaking process for lithium ion battery. J Membr Sci. 2020;597: 117725.

    Article  CAS  Google Scholar 

  85. Wu D, Dong N, Wang R, Qi S, Liu B, Wu D. In situ construction of high-safety and non-flammable polyimide “ceramic” lithium-ion battery separator via SiO2 nano-encapsulation. Chem Eng J. 2021;420: 129992.

    Article  CAS  Google Scholar 

  86. Ding Y, Hou H, Zhao Y, Zhu Z, Fong H. Electrospun polyimide nanofibers and their applications. Prog Polym Sci. 2016;61:67.

    Article  CAS  Google Scholar 

  87. Pai J-Y, Hsieh C-T, Lee C-H, Wang J-A, Ku H-Y, Huang C-L, Hardwick LJ, Hu C-C. Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. J Power Sources. 2021;482: 229054.

    Article  CAS  Google Scholar 

  88. Wang Y, Wang S, Fang J, Ding L-X, Wang H. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci. 2017;537:248.

    Article  CAS  Google Scholar 

  89. Arifeen WU, Choi J, Yoo K, Shim J, Ko TJ. A nano-silica/polyacrylonitrile/polyimide composite separator for advanced fast charging lithium-ion batteries. Chem Eng J. 2020;417: 128075.

    Article  Google Scholar 

  90. Sun G, Dong G, Kong L, Yan X, Tian G, Qi S, Wu D. Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale. 2018;10:22439.

    Article  CAS  Google Scholar 

  91. Zhu C, Zhang J, Xu J, Yin X, Wu J, Chen S, Zhu Z, Wang L, Wang H. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohyd Polym. 2020;248: 116753.

    Article  CAS  Google Scholar 

  92. Zhu C, Zhang J, Zeng X, Xu J, Wang L, Li ZC. Semi-interpenetrating polymer electrolyte as a coating layer constructed on polyphenylene sulfide nonwoven to afford superior stability and performance for lithium-ion batteries. ChemElectroChem. 2020;7:4492.

    Article  CAS  Google Scholar 

  93. Zhu C, Zhang J, Qiu S, Jia Y, Wang L, Wang H. Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (BC) for heat-resistant and high-wettability separator in lithium-ion battery. Comp Comm. 2021;24: 100659.

    Google Scholar 

  94. Zhou H, Yu C, Gao H, Wu JC, Hou D, Liu M, Zhang M, Xu Z, Yang J, Chen D. Polyphenylene sulfide-based solid-state separator for limited Li metal battery. Small. 2021;17: e2104365.

    Article  Google Scholar 

  95. Yu Y, Jia G, Zhao L, Xiang H, Hu Z, Xu G, Zhu M. Flexible and heat-resistant polyphenylene sulfide ultrafine fiber hybrid separators for high-safety lithium-ion batteries. Chem Eng J. 2023;452: 139112.

    Article  CAS  Google Scholar 

  96. Choi S-S, Lee YS, Joo CW, Lee SG, Park JK, Han K-S. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta. 2004;50:339.

    Article  CAS  Google Scholar 

  97. Liang Y, Cheng S, Zhao J, Zhang C, Sun S, Zhou N, Qiu Y, Zhang X. Heat treatment of electrospun polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J Power Sources. 2013;240:204.

    Article  CAS  Google Scholar 

  98. Hwang K, Kwon B, Byun H. Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators. J Membr Sci. 2011;378:111.

    Article  CAS  Google Scholar 

  99. Guo M, Zhu H, Wan P, Xu F, Wang C, Lu S, Zhang Y, Fan H, Xu J. Freestanding and ultra-fexible PAN/ZIF-67 hybrid membrane with controlled porosity for high-performance and high-safety lithium batteries separator. Adv Fiber Mater. 2022;4:1511.

    Article  CAS  Google Scholar 

  100. Fu X, Shang C, Yang M, Akinoglu EM, Wang X, Zhou G. An ion-conductive separator for high safety Li metal batteries. J Power Sources. 2020;475: 228687.

    Article  CAS  Google Scholar 

  101. Yusuf A, Avvaru VS, Dirican M, Changchun S, Wang D-Y. Low heat yielding electrospun phosphenanthrene oxide loaded polyacrylonitrile composite separators for safer high energy density lithium-ion batteries. Appl Mater Today. 2020;20: 100675.

    Article  Google Scholar 

  102. Li Z, Wang W, Han Y, Zhang L, Li S, Tang B, Xu S, Xu Z. Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources. 2018;378:176.

    Article  CAS  Google Scholar 

  103. Li D, Shi D, Feng K, Li X, Zhang H. Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J Membr Sci. 2017;530:125.

    Article  CAS  Google Scholar 

  104. I’Abee R, DaRosa F, Armstrong MJ, Hantel MM, Mourzagh D. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility. J Power Sources. 2017;345:202.

    Article  Google Scholar 

  105. Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q, Chun S-J, Lee S-Y, Lee S-Y. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources. 2013;242:533.

    Article  CAS  Google Scholar 

  106. Kim H, Mattinen U, Guccini V, Liu H, Salazar-Alvarez G, Lindstrom RW, Lindbergh G, Cornell A. Feasibility of chemically modified cellulose nanofiber membranes as lithium-ion battery separators. ACS Appl Mater Interfaces. 2020;12:41211.

    Article  CAS  Google Scholar 

  107. Lv D, Chai J, Wang P, Zhu L, Liu C, Nie S, Li B, Cui G. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohyd Polym. 2021;251: 116975.

    Article  CAS  Google Scholar 

  108. Huang C, Ji H, Yang Y, Guo B, Luo L, Meng Z, Fan L, Xu J. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohyd Polym. 2020;230: 115570.

    Article  CAS  Google Scholar 

  109. Zhang F, Lan X, Peng H, Hu X, Zhao Q. A “trojan horse” camouflage strategy for high-performance cellulose paper and separators. Adv Funct Mater. 2020;30:2002169.

    Article  CAS  Google Scholar 

  110. Wang M-Q, Wang C-Y, Fan Z-M, Wu G-Y, Liu L, Huang Y-D. Aramid nanofiber-based porous membrane for suppressing dendrite growth of metal-ion batteries with enhanced electrochemistry performance. Chem Eng J. 2021;426: 131924.

    Article  CAS  Google Scholar 

  111. Sheng L, Li Z, Hsueh C-H, Liu L, Wang J, Tang Y, Wang J, Xu H, He X. Suppression of lithium dendrite by aramid nanofibrous aerogel separator. J Power Sources. 2021;515: 230608.

    Article  CAS  Google Scholar 

  112. Yang B, Wang L, Zhang M, Li W, Zhou Q, Zhong L. Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. J Mater Chem A. 2021;9:12923.

    Article  CAS  Google Scholar 

  113. Chun S-J, Choi E-S, Lee E-H, Kim JH, Lee S-Y, Lee S-Y. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem A. 2012;22:16618.

    Article  CAS  Google Scholar 

  114. Ma X, Kolla P, Yang R, Wang Z, Zhao Y, Smirnova AL, Fong H. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta. 2017;236:417.

    Article  CAS  Google Scholar 

  115. Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources. 2013;226:82.

    Article  CAS  Google Scholar 

  116. Cao L, An P, Xu Z, Huang J. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem. 2016;767:34.

    Article  CAS  Google Scholar 

  117. Li H, Zhang B, Lin B, Yang Y, Zhao Y, Wang L. Electrospun poly(ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries. J Electrochem Soc. 2018;165:A939.

    Article  CAS  Google Scholar 

  118. Wang Y, Luo J, Chen L, Long J, Hu J, Meng L. Effect of fibrillated fiber morphology on properties of paper-based separators for lithium-ion battery applications. J Power Sources. 2021;482: 228899.

    Article  CAS  Google Scholar 

  119. Cai H, Tong X, Chen K, Shen Y, Wu J, Xiang Y, Wang Z, Li J. Electrospun polyethylene terephthalate nonwoven reinforced polypropylene separator: scalable synthesis and its lithium ion battery performance. Polymers (Basel). 2018;10:10060574.

    Article  Google Scholar 

  120. Lee H, Yun J, Choi H, Kim D, Byun H. The preparation of primary battery separator using polyamide nonwoven and nanofiber. Adv Mater Res. 2013;724:1079.

    Article  Google Scholar 

  121. Zhao H, Deng N, Wang G, Ren H, Kang W, Cheng B. A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries. Chem Eng J. 2021;404: 126542.

    Article  CAS  Google Scholar 

  122. Cai M, Yuan D, Zhang X, Pu Y, Liu X, He H, Zhang L, Ning X. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sources. 2020;461: 228123.

    Article  CAS  Google Scholar 

  123. Wang S, Zhang D, Shao Z, Liu S. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydr Polym. 2019;214:328.

    Article  CAS  Google Scholar 

  124. Tian X, Xin B, Lu Z, Gao W, Zhang F. Electrospun sandwich polysulfonamide/polyacrylonitrile/polysulfonamide composite nanofibrous membranes for lithium-ion batteries. RSC Adv. 2019;9:11220.

    Article  CAS  Google Scholar 

  125. Zhai Y, Wang N, Mao X, Si Y, Yu J, Al-Deyab SS, El-Newehy M, Ding B. Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A. 2014;2:14511.

    Article  CAS  Google Scholar 

  126. Wei Z, Gu J, Zhang F, Pan Z, Zhao Y. Core-shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance. ACS Appl Polym Mater. 2020;2:1989.

    Article  CAS  Google Scholar 

  127. Sun G, Liu B, Niu H, Hao F, Chen N, Zhang M, Tian G, Qi S, Wu D. In situ welding: superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Membr Sci. 2020;595: 117509.

    Article  CAS  Google Scholar 

  128. Zhu D, Xu G, Barnes M, Li Y, Tseng C-P, Zhang Z, Zhang J-J, Zhu Y, Khalil M-M, Verduzco R, Ajayan P-M. Covalent organic frameworks for batteries. Adv Funct Mater. 2020;10:1902872.

    Google Scholar 

  129. Xu G, Yan QB, Bai P, Dou H, Nie P, Zhang X. Nano-sized titanium nitride functionalized separator improves cycling performance of lithium sulfur batteries. ChemistrySelect. 2019;4:698.

    Article  CAS  Google Scholar 

  130. Xu G, Yan QB, Wang S, Kushima A, Bai P, Liu K, Zhang X, Tang Z, Li J. A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chem Sci. 2017;8:6619.

    Article  CAS  Google Scholar 

  131. Xu G, Yu D, Zheng D, Wang S, Xue W, Cao XE, Zeng H, Xiao X, Ge M, Lee WK, Zhu M. Fast heat transport inside lithium-sulfur batteries promotes their safety and electrochemical performance. iScience. 2020;23: 101576.

    Article  CAS  Google Scholar 

  132. Liang X, Yang Y, Jin X, Huang Z, Kang F. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J Membr Sci. 2015;493:1.

    Article  CAS  Google Scholar 

  133. Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces. 2013;5:128.

    Article  CAS  Google Scholar 

  134. Xu Q, Kong Q, Liu Z, Wang X, Liu R, Zhang J, Yue L, Duan Y, Cui G. Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng. 2013;2:194.

    Article  Google Scholar 

  135. Zhang H, Liu J, Guan M, Shang Z, Sun Y, Lu Z, Li H, An X, Liu H. Nanofibrillated cellulose (NFC) as a pore size mediator in the preparation of thermally resistant separators for lithium ion batteries. ACS Sustain Chem Eng. 2018;6:4838.

    Article  CAS  Google Scholar 

  136. Zhu C, Zhang J, Xu J, Yin X, Wu J, Chen S, Zhu Z, Wang L, Wang H. Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. J Membr Sci. 2019;588: 117169.

    Article  CAS  Google Scholar 

  137. Xiao K, Zhai Y, Yu J, Ding B. Nanonet-structured poly(m-phenylene isophthalamide)–polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Adv. 2015;5:55478.

    Article  CAS  Google Scholar 

  138. Cui Y, Liang X, Chai J, Cui Z, Wang Q, He W, Liu X, Liu Z, Cui G, Feng J. High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis. Adv Sci (Weinh). 2017;4:1700174.

    Article  Google Scholar 

  139. Dong T, Zhang J, Xu G, Chai J, Du H, Wang L, Wen H, Zang X, Du A, Jia Q, Zhou X, Cui G. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energ Environ Sci. 2018;11:1197.

    Article  CAS  Google Scholar 

  140. Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci USA. 2016;113:7094.

    Article  CAS  Google Scholar 

  141. Shi Z, Guo W, Zhou L, Xu Q, Min Y. A 3D fiber skeleton reinforced PEO-based polymer electrolyte for high rate and ultra-long cycle all-solid-state batteries. J Mater Chem A. 2021;9:21057.

    Article  CAS  Google Scholar 

  142. Wang Q, Zhang B, Zhang J, Yu Y, Hu P, Zhang C, Ding G, Liu Z, Zong C, Cui G. Heat-resistant and rigid-flexible coupling glass-fiber nonwoven supported polymer electrolyte for high-performance lithium ion batteries. Electrochim Acta. 2015;157:191.

    Article  CAS  Google Scholar 

  143. Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater. 2020;10:1903939.

    Article  CAS  Google Scholar 

  144. Zhang J, Yue L, Hu P, Liu Z, Qin B, Zhang B, Wang Q, Ding G, Zhang C, Zhou X, Yao J, Cui G, Chen L. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Sci Rep. 2014;4:6272.

    Article  CAS  Google Scholar 

  145. Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater. 2015;5:1501082.

    Article  Google Scholar 

  146. Zhang Z, Ying H, Zhang G, Chao L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries. Energy Storage Mater. 2021;41:631.

    Article  Google Scholar 

  147. Zhao J, Zhang J, Hu P, Ma J, Wang X, Yue L, Xu G, Qin B, Liu Z, Zhou X, Cui G. A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta. 2016;188:23.

    Article  CAS  Google Scholar 

  148. Xie H, Yang C, Fu KK, Yao Y, Jiang F, Hitz E, Liu B, Wang S, Hu L. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv Energy Mater. 2018;8:1703474.

    Article  Google Scholar 

  149. Yang C, Wu Q, Xie W, Zhang X, Brozena A, Zheng J, Garaga MN, Ko BH, Mao Y, He S, Gao Y, Wang P, Tyagi M, Jiao F, Briber R, Albertus P, Wang C, Greenbaum S, Hu YY, Isogai A, Winter M, Xu K, Qi Y, Hu L. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature. 2021;598:590.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2022YFB3803502), the National Key Research and Development Program of China (22Z10303), the Fundamental Research Funds for the Central Universities (2232021D-21), the Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province (No. PLN2022-11), and Graduate Student Innovation Fund of Donghua University (BCZD2023003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zexu Hu, Hengxue Xiang or Meifang Zhu.

Ethics declarations

Conflict of Interest

Meifang Zhu is an Editor-in-Chief for Advanced Fiber Materials and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, M., Chen, Z. et al. Advances in Nonwoven-Based Separators for Lithium-Ion Batteries. Adv. Fiber Mater. 5, 1827–1851 (2023). https://doi.org/10.1007/s42765-023-00322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00322-3

Keywords

Navigation