Skip to main content

Advertisement

Log in

Recent Progress of Graphene Fiber/Fabric Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

High-performance fiber-shaped power sources are anticipated to considerably contribute to the continuous development of smart wearable devices. As one-/two-dimensional (1D/2D) frameworks constructed from graphene sheets, graphene fibers and fabrics inherit the merits of graphene, including its lightweight nature, high electrical conductivity, and exceptional mechanical strength. The as-fabricated graphene fiber/fabric flexible supercapacitor (FSC) is, therefore, regarded as a promising candidate for next-generation wearable energy storage devices owing to its high energy/power density, adequate safety, satisfactory flexibility, and extended cycle life. The gap between practical applications and experimental demonstrations of FSC is drastically reduced as a result of technological advancements. To this end, herein, recent advancements of FSCs in fiber element regulation, fiber/fabric construction, and practical applications are methodically reviewed and a forecast of their growth is presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement 

Data availability is not applicable to this article as no new data were created or analyzed in this article.

References

  1. Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-integrated wearable systems: a comprehensive review. Chem Rev. 2019;119:5461.

    Article  CAS  Google Scholar 

  2. Wang H, Zhang Y, Liang X, Zhang Y. Smart fibers and textiles for personal health management. ACS Nano. 2021;15:12497.

    Article  CAS  Google Scholar 

  3. Ma W, Zhang Y, Pan S, Cheng Y, Shao Z, Xiang H, Chen G, Zhu L, Weng W, Bai H, Zhu M. Smart fibers for energy conversion and storage. Chem Soc Rev. 2021;50:7009.

    Article  CAS  Google Scholar 

  4. Liu M, Cong Z, Pu X, Guo W, Liu T, Li M, Zhang Y, Hu W, Wang ZL. High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv Funct Mater. 2019;29:1806298.

    Article  CAS  Google Scholar 

  5. Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep. 2013;3:2286.

    Article  Google Scholar 

  6. Xiao W, Huang J, Zhou W, Jiang Q, Deng Y, Zhang Y, Tian L. Surface modification of commercial cotton yarn as electrode for construction of flexible fiber-shaped supercapacitor. Coatings. 2021;11:1086.

    Article  CAS  Google Scholar 

  7. Yang QY, Xu Z, Fang B, Huang TQ, Cai SY, Chen H, Liu YJ, Gopalsamy K, Gao WW, Gao C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A. 2017;5:22113.

    Article  CAS  Google Scholar 

  8. Sheng HW, Zhou JJ, Li B, He YH, Zhang XT, Liang J, Zhou JY, Su Q, Xie EQ, Lan W, Wang KR, Yu CJ. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Sci Adv. 2021;7:eabe3097.

    Article  CAS  Google Scholar 

  9. Chen CR, Qin H, Cong HP, Yu SH. A highly stretchable and real-time healable supercapacitor. Adv Mater. 2019;31: e1900573.

    Article  Google Scholar 

  10. Gong W, Hou C, Zhou J, Guo Y, Zhang W, Li Y, Zhang Q, Wang H. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat Commun. 2019;10:868.

    Article  Google Scholar 

  11. Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M. A route toward smart system integration: From fiber design to device construction. Adv Mater. 2020;32: e1902301.

    Article  Google Scholar 

  12. Geim AK. Graphene: status and prospects. Science. 2009;324:1530.

    Article  CAS  Google Scholar 

  13. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81:109.

    Article  CAS  Google Scholar 

  14. Ming X, Wei A, Liu Y, Peng L, Li P, Wang J, Liu S, Fang W, Wang Z, Peng H, Lin J, Huang H, Han Z, Luo S, Cao M, Wang B, Liu Z, Guo F, Xu Z, Gao C. 2d-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv Mater. 2022;34: e2201867.

    Article  Google Scholar 

  15. Ma W, Chen S, Yang S, Chen W, Cheng Y, Guo Y, Peng S, Ramakrishna S, Zhu M. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J Power Sources. 2016;306:481.

    Article  CAS  Google Scholar 

  16. Wang B, Wu Q, Sun H, Zhang J, Ren J, Luo Y, Wang M, Peng H. An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. J Mater Chem A. 2017;5:925.

    Article  CAS  Google Scholar 

  17. Ren C, Jia X, Zhang W, Hou D, Xia Z, Huang D, Hu J, Chen S, Gao S. Hierarchical porous integrated co1−xs/cofe2o4@rgo nanoflowers fabricated via temperature-controlled in situ calcining sulfurization of multivariate cofe-mof-74@rgo for high-performance supercapacitor. Adv Funct Mater. 2020;30:2004519.

    Article  CAS  Google Scholar 

  18. Wu Y, Meng Z, Yang J, Xue Y. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance. Nanotechnology. 2021;32: 295401.

    Article  CAS  Google Scholar 

  19. Seyedin S, Romano MS, Minett AI, Razal JM. Towards the knittability of graphene oxide fibres. Sci Rep. 2015;5:14946.

    Article  CAS  Google Scholar 

  20. Shao F, Hu N, Su Y, Yao L, Li B, Zou C, Li G, Zhang C, Li H, Yang Z, Zhang Y. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors. Chem Eng J. 2020;392: 123692.

    Article  CAS  Google Scholar 

  21. Fang B, Chang D, Xu Z, Gao C. A review on graphene fibers: Expectations, advances, and prospects. Adv Mater. 2020;32: e1902664.

    Article  Google Scholar 

  22. Xu T, Zhang Z, Qu L. Graphene-based fibers: recent advances in preparation and application. Adv Mater. 2020;32: e1901979.

    Article  Google Scholar 

  23. Zhang Y, Ding J, Qi B, Tao W, Wang J, Zhao C, Peng H, Shi J. Multifunctional fibers to shape future biomedical devices. Adv Funct Mater. 2019;29:1902834.

    Article  Google Scholar 

  24. Ding J, Hu W, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118:6457.

    Article  CAS  Google Scholar 

  25. Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41:441.

    Article  CAS  Google Scholar 

  26. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006;313:1760.

    Article  CAS  Google Scholar 

  27. Liu YM, Merlet C, Smit B. Carbons with regular pore geometry yield fundamental insights into supercapacitor charge storage. ACS Central Sci. 1813;2019:5.

    Google Scholar 

  28. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, MacDonald AH, Ruoff RS. Capacitance of carbon-based electrical double-layer capacitors. Nat Commun. 2014;5:3317.

    Article  Google Scholar 

  29. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2019;5:5.

    Article  Google Scholar 

  30. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12:518.

    Article  CAS  Google Scholar 

  31. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341:1502.

    Article  CAS  Google Scholar 

  32. Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020;19:1151.

    Article  CAS  Google Scholar 

  33. Lee HY, Goodenough JB. Supercapacitor behavior with KCl electrolyte. J Solid State Chem. 1999;144:220.

    Article  CAS  Google Scholar 

  34. Ferris A, Garbarino S, Guay D, Pech D. 3d RuO2 microsupercapacitors with remarkable areal energy. Adv Mater. 2015;27:6625.

    Article  CAS  Google Scholar 

  35. Berggren M, Malliaras GG. How conducting polymer electrodes operate. Science. 2019;364:233.

    Article  CAS  Google Scholar 

  36. Jiang Y, Liu J. Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater. 2019;2:30.

    Article  Google Scholar 

  37. Pu X, Zhao D, Fu C, Chen Z, Cao S, Wang C, Cao Y. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem Int Ed. 2021;60:21310.

    Article  CAS  Google Scholar 

  38. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4:1600539.

    Article  Google Scholar 

  39. Chatterjee DP, Nandi AK. A review on the recent advances in hybrid supercapacitors. J Mater Chem A. 2021;9:15880.

    Article  CAS  Google Scholar 

  40. Chen S, Qiu L, Cheng HM. Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev. 2020;120:2811.

    Article  CAS  Google Scholar 

  41. Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry. Nat Mater. 2019;18:520.

    Article  CAS  Google Scholar 

  42. Xu Y, Sheng K, Li C, Shi G. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem A. 2011;21:7376.

    Article  CAS  Google Scholar 

  43. Eigler S, Hirsch A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Ed. 2014;53:7720.

    Article  CAS  Google Scholar 

  44. Li C, Lin J, Shen L, Bao N. Quantitative analysis and kinetic modeling of ultrasound-assisted exfoliation and breakage process of graphite oxide. Chem Eng Sci. 2020;213: 115414.

    Article  CAS  Google Scholar 

  45. Chen J, Li Y, Huang L, Jia N, Li C, Shi G. Size fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv Mater. 2015;27:3654.

    Article  CAS  Google Scholar 

  46. Weng C, Wu J, Shen L, Bao N. Shear exfoliation of large-size GO sheets for high-performance films. J Mater Sci. 2021;56:18946.

    Article  CAS  Google Scholar 

  47. Kang JH, Kim T, Choi J, Park J, Kim YS, Chang MS, Jung H, Park KT, Yang SJ, Park CR. Hidden second oxidation step of hummers method. Chem Mater. 2016;28:756.

    Article  CAS  Google Scholar 

  48. Li C, Guo Y, Shen L, Ji C, Bao N. Scalable concentration process of graphene oxide dispersions via cross-flow membrane filtration. Chem Eng Sci. 2019;200:127.

    Article  CAS  Google Scholar 

  49. Wang RH, Wang Y, Xu CH, Sun J, Gao L. Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. Rsc Adv. 2013;3:1194.

    Article  Google Scholar 

  50. Ren PG, Yan DX, Ji X, Chen T, Li ZM. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology. 2011;22: 055705.

    Article  Google Scholar 

  51. Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48:4466.

    Article  CAS  Google Scholar 

  52. Huang T, Zheng B, Kou L, Gopalsamy K, Xu Z, Gao C, Meng Y, Wei Z. Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 2013;3:23957.

    Article  CAS  Google Scholar 

  53. Jung I, Field DA, Clark NJ, Zhu YW, Yang DX, Piner RD, Stankovich S, Dikin DA, Geisler H, Ventrice CA, Ruoff RS. Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J Phys Chem C. 2009;113:18480.

    Article  CAS  Google Scholar 

  54. Yin KB, Li HT, Xia YD, Bi HC, Sun J, Liu ZG, Sun LT. Thermodynamic and kinetic analysis of low-temperature thermal reduction of graphene oxide. Nano-Micro Lett. 2011;3:51.

    Article  CAS  Google Scholar 

  55. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun. 2011;2:571.

    Article  Google Scholar 

  56. Xu Z, Peng L, Liu Y, Liu Z, Sun H, Gao W, Gao C. Experimental guidance to graphene macroscopic wet-spun fibers, continuous papers, and ultralightweight aerogels. Chem Mater. 2016;29:319.

    Article  Google Scholar 

  57. Xu Z, Sun H, Zhao X, Gao C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater. 2013;25:188.

    Article  CAS  Google Scholar 

  58. Shim YH, Ahn H, Lee S, Kim SO, Kim SY. Universal alignment of graphene oxide in suspensions and fibers. ACS Nano. 2021;15:13453.

    Article  CAS  Google Scholar 

  59. Cao J, Zhang Y, Men C, Sun Y, Wang Z, Zhang X, Li Q. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions. ACS Nano. 2014;8:4325.

    Article  CAS  Google Scholar 

  60. Wu C, Wang X, Zhuo Q, Sun J, Qin C, Wang J, Dai L. A facile continuous wet-spinning of graphene oxide fibers from aqueous solutions at high pH with the introduction of ammonia. Carbon. 2018;138:292.

    Article  CAS  Google Scholar 

  61. Aboutalebi SH, Jalili R, Esrafilzadeh D, Salari M, Gholamvand Z, Aminorroaya Yamini S, Konstantinov K, Shepherd RL, Chen J, Moulton SE, Innis PC, Minett AI, Razal JM, Wallace GG. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano. 2014;8:2456.

    Article  CAS  Google Scholar 

  62. Liao M, Sun H, Zhang J, Wu J, Xie S, Fu X, Sun X, Wang B, Peng H. Multicolor, fluorescent supercapacitor fiber. Small. 2018;14: e1702052.

    Article  Google Scholar 

  63. Cruz-Silva R, Morelos-Gomez A, Kim HI, Jang HK, Tristan F, Vega-Diaz S, Rajukumar LP, Elias AL, Perea-Lopez N, Suhr J, Endo M, Terrones M. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano. 2014;8:5959.

    Article  CAS  Google Scholar 

  64. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol. 2014;9:555.

    Article  CAS  Google Scholar 

  65. Ma P, Li P, Wang Y, Chang D, Gao WW, Gao C. Liquid crystalline microdroplets of graphene oxide via microfluidics. Chinese J Polym Sci. 2021;39:1657.

    Article  CAS  Google Scholar 

  66. Hu X, Tian M, Pan N, Sun B, Li Z, Ma Y, Zhang X, Zhu S, Chen Z, Qu L. Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textiles. Carbon. 2019;152:106.

    Article  CAS  Google Scholar 

  67. Tian Q, Xu Z, Liu Y, Fang B, Peng L, Xi J, Li Z, Gao C. Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale. 2017;9:12335.

    Article  CAS  Google Scholar 

  68. Zhang ZF, Zhang P, Zhang DS, Lin H, Chen YY. A new strategy for the preparation of flexible macroscopic graphene fibers as supercapacitor electrodes. Mater Design. 2018;157:170.

    Article  CAS  Google Scholar 

  69. Hua C, Shang Y, Li X, Hu X, Wang Y, Wang X, Zhang Y, Li X, Duan H, Cao A. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale. 2016;8:10659.

    Article  CAS  Google Scholar 

  70. Nardecchia S, Carriazo D, Ferrer ML, Gutierrez MC, del Monte F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev. 2013;42:794.

    Article  CAS  Google Scholar 

  71. Dong Z, Jiang C, Cheng H, Zhao Y, Shi G, Jiang L, Qu L. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater. 1856;2012:24.

    Google Scholar 

  72. Du XY, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater. 2019;31: e1903733.

    Article  Google Scholar 

  73. Xin G, Zhu W, Deng Y, Cheng J, Zhang LT, Chung AJ, De S, Lian J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol. 2019;14:168.

    Article  CAS  Google Scholar 

  74. Rocha JF, Hostert L, Bejarano MLM, Cardoso RM, Santos MD, Maroneze CM, Gongora-Rubio MR, Silva CCC. Graphene oxide fibers by microfluidics assembly: a strategy for structural and dimensional control. Nanoscale. 2021;13:6752.

    Article  CAS  Google Scholar 

  75. Liu H, Zhou F, Shi X, Shi Q, Wu Z-S. Recent advances and prospects of graphene-based fibers for application in energy storage devices. Acta Phys Chim Sin. 2022;0:2204017.

  76. Yao W, Liu H, Sun J, Wu B, Liu Y. Engineering of chemical vapor deposition graphene layers: growth, characterization, and properties. Adv Funct Mater. 2022;32:2202584.

    Article  CAS  Google Scholar 

  77. Wu P, Zhang W, Li Z, Yang J. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. Small. 2014;10:2136.

    Article  CAS  Google Scholar 

  78. Li X, Zhao T, Wang K, Yang Y, Wei J, Kang F, Wu D, Zhu H. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir. 2011;27:12164.

    Article  CAS  Google Scholar 

  79. Chen T, Dai L. Macroscopic graphene fibers directly assembled from cvd-grown fiber-shaped hollow graphene tubes. Angew Chem Int Ed. 2015;54:14947.

    Article  CAS  Google Scholar 

  80. Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat Photonics. 2019;13:754.

    Article  CAS  Google Scholar 

  81. Jian M, Zhang Y, Liu Z. Graphene fibers: preparation, properties, and applications. Acta Physico Chimica Sinica. 2020;38:2007093.

    Article  Google Scholar 

  82. Guan TX, Shen LM, Bao NZ. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor. Ind Eng Chem Res. 2019;58:17338.

    Article  CAS  Google Scholar 

  83. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014;43:7067.

    Article  CAS  Google Scholar 

  84. Xue Y, Wu B, Bao Q, Liu Y. Controllable synthesis of doped graphene and its applications. Small. 2014;10:2975.

    Article  CAS  Google Scholar 

  85. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011;11:2472.

    Article  CAS  Google Scholar 

  86. Jeon IY, Choi HJ, Ju MJ, Choi IT, Lim K, Ko J, Kim HK, Kim JC, Lee JJ, Shin D, Jung SM, Seo JM, Kim MJ, Park N, Dai L, Baek JB. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep. 2013;3:2260.

    Article  Google Scholar 

  87. Wu ZS, Ren WC, Xu L, Li F, Cheng HM. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano. 2011;5:5463.

    Article  CAS  Google Scholar 

  88. Wu P, Cai Z, Gao Y, Zhang H, Cai C. Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells. Chem Commun. 2011;47:11327.

    Article  CAS  Google Scholar 

  89. Wu G, Tan P, Wu X, Peng L, Cheng H, Wang CF, Chen W, Yu Z, Chen S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv Funct Mater. 2017;27:1702493.

    Article  Google Scholar 

  90. Ma W, Li W, Li M, Mao Q, Pan Z, Zhu M, Zhang Y. Scalable microgel spinning of a three-dimensional porous graphene fiber for high-performance flexible supercapacitors. J Mater Chem A. 2020;8:25355.

    Article  CAS  Google Scholar 

  91. Zhao T, Yang D, Xu T, Zhang M, Zhang S, Qin L, Yu ZZ. Cold-resistant nitrogen/sulfur dual-doped graphene fiber supercapacitors with solar-thermal energy conversion effect. Chemistry. 2021;27:3473.

    Article  CAS  Google Scholar 

  92. Xu Y, Chen CY, Zhao Z, Lin Z, Lee C, Xu X, Wang C, Huang Y, Shakir MI, Duan X. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015;15:4605.

    Article  CAS  Google Scholar 

  93. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332:1537.

    Article  CAS  Google Scholar 

  94. Xu Z, Liu Y, Zhao X, Peng L, Sun H, Xu Y, Ren X, Jin C, Xu P, Wang M, Gao C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv Mater. 2016;28:6449.

    Article  CAS  Google Scholar 

  95. Cheng Y, Cui G, Liu C, Liu Z, Yan L, Liu B, Yuan H, Shi P, Jiang J, Huang K, Wang K, Cheng S, Li J, Gao P, Zhang X, Qi Y, Liu Z. Electric current aligning component units during graphene fiber joule heating. Adv Funct Mater. 2021;32:2103493.

    Article  Google Scholar 

  96. Guan TX, Shen S, Cheng ZS, Wu G, Bao NZ. Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors. Chem Eng J. 2022;440: 135878.

    Article  CAS  Google Scholar 

  97. Radich EJ, Kamat PV. Making graphene holey. Gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. ACS Nano. 2013;7:5546.

    Article  CAS  Google Scholar 

  98. Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X. Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun. 2014;5:4554.

    Article  CAS  Google Scholar 

  99. Qiu H, Cheng H, Meng J, Wu G, Chen S. Magnetothermal microfluidic-assisted hierarchical microfibers for ultrahigh-energy-density supercapacitors. Angew Chem Int Ed. 2020;59:7934.

    Article  CAS  Google Scholar 

  100. Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater. 2016;28:3646.

    Article  CAS  Google Scholar 

  101. Sun J, Li Y, Peng Q, Hou S, Zou D, Shang Y, Li Y, Li P, Du Q, Wang Z, Xia Y, Xia L, Li X, Cao A. Macroscopic, flexible, high-performance graphene ribbons. ACS Nano. 2013;7:10225.

    Article  CAS  Google Scholar 

  102. Xiang X, Yang Z, Di J, Zhang W, Li R, Kang L, Zhang Y, Zhang H, Li Q. In situ twisting for stabilizing and toughening conductive graphene yarns. Nanoscale. 2017;9:11523.

    Article  CAS  Google Scholar 

  103. Zhang ZF, Zhang DS, Lin H, Chen YY. Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. J Power Sources. 2019;433: 226711.

    Article  CAS  Google Scholar 

  104. Fang B, Xiao Y, Xu Z, Chang D, Wang B, Gao W, Gao C. Handedness-controlled and solvent-driven actuators with twisted fibers. Mater Horiz. 2019;6:1207.

    Article  CAS  Google Scholar 

  105. Zheng X, Zhang K, Yao L, Qiu Y, Wang S. Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. J Mater Chem A. 2018;6:896.

    Article  CAS  Google Scholar 

  106. Ma W, Li W, Li M, Mao Q, Pan Z, Hu J, Li X, Zhu M, Zhang Y. Unzipped carbon nanotube/graphene hybrid fiber with less “dead volume” for ultrahigh volumetric energy density supercapacitors. Adv Funct Mater. 2021;31:2100195.

    Article  CAS  Google Scholar 

  107. Guan T, Cheng Z, Li Z, Gao L, Yan K, Shen L, Bao N. Hydrothermal-assisted in situ growth of vertically aligned MoS2 nanosheets on reduced graphene oxide fiber fabrics toward high-performance flexible supercapacitors. Ind Eng Chem Res. 2022;61:3840.

    Article  CAS  Google Scholar 

  108. Wu X, Wu G, Tan P, Cheng H, Hong R, Wang F, Chen S. Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors. J Mater Chem A. 2018;6:8940.

    Article  CAS  Google Scholar 

  109. Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with ac line-filtering performance. Science. 2010;329:1637.

    Article  CAS  Google Scholar 

  110. Ma WJ, Chen SH, Yang SY, Zhu MF. Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. Rsc Adv. 2016;6:50112.

    Article  CAS  Google Scholar 

  111. Huang T, Zheng B, Liu Z, Kou L, Gao C. High rate capability supercapacitors assembled from wet-spun graphene films with a CaCO3 template. J Mater Chem A. 1890;2015:3.

    Google Scholar 

  112. Li J, Shao Y, Jiang P, Zhang Q, Hou C, Li Y, Wang H. 1T-Molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. J Mater Chem A. 2019;7:3143.

    Article  CAS  Google Scholar 

  113. Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater. 2013;25:2326.

    Article  CAS  Google Scholar 

  114. Hu WX, Xiang RF, Zhang K, Xu QL, Liu Y, Jing YY, Zhang J, Hu XF, Zheng YY, Jin YH, Yang XN, Lu CH. Electrochemical performance of coaxially wet-spun hierarchically porous lignin-based carbon/graphene fiber electrodes for flexible supercapacitors. Acs Appl Energ Mater. 2021;4:9077.

    Article  CAS  Google Scholar 

  115. Fu H, Zhang X, Fu J, Shen G, Ding Y, Chen Z, Du H. Single layers of MoS2/Graphene nanosheets embedded in activated carbon nanofibers for high-performance supercapacitor. J Alloy Compd. 2020;829: 154557.

    Article  CAS  Google Scholar 

  116. Zhang J, Yang X, He Y, Bai Y, Kang L, Xu H, Shi F, Lei Z, Liu Z-H. δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem A. 2016;4:9088.

    Article  CAS  Google Scholar 

  117. Yang J, Weng W, Liang Y, Zhang Y, Yang L, Luo X, Liu Q, Zhu M. Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance. Electrochim Acta. 2019;304:378.

    Article  CAS  Google Scholar 

  118. Cai S, Huang T, Chen H, Salman M, Gopalsamy K, Gao C. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J Mater Chem A. 2017;5:22489.

    Article  CAS  Google Scholar 

  119. Salman A, Padmajan Sasikala S, Kim IH, Kim JT, Lee GS, Kim JG, Kim SO. Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale. 2020;12:20239.

    Article  CAS  Google Scholar 

  120. Meng J, Wu G, Wu X, Cheng H, Xu Z, Chen S. Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage. Adv Sci. 2020;7:1901931.

    Article  CAS  Google Scholar 

  121. Keawploy N, Venkatkarthick R, Wangyao P, Zhang X, Liu R, Qin J. Eco-friendly conductive cotton-based textile electrodes using silver- and carbon-coated fabrics for advanced flexible supercapacitors. Energ Fuel. 2020;34:8977.

    Article  CAS  Google Scholar 

  122. Wu Z, Jiang L, Tian W, Wang Y, Jiang Y, Gu Q, Hu L. Novel sub-5 nm layered niobium phosphate nanosheets for high-voltage, cation-intercalation typed electrochemical energy storage in wearable pseudocapacitors. Adv Energy Mater. 2019;9:1900111.

    Article  Google Scholar 

  123. Liu Z, Zhang X, Liu C, Li D, Zhang M, Yin F, Xin G, Wang G. Ferroconcrete-inspired design of a nonwoven graphene fiber fabric reinforced electrode for flexible fast-charging sodium ion storage devices. J Mater Chem A. 2020;8:2777.

    Article  CAS  Google Scholar 

  124. Chang D, Liu J, Fang B, Xu Z, Li Z, Liu Y, Brassart L, Guo F, Gao W, Gao C. Reversible fusion and fission of graphene oxide–based fibers. Science. 2021;372:614.

    Article  CAS  Google Scholar 

  125. Li Z, Xu Z, Liu Y, Wang R, Gao C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat Commun. 2016;7:13684.

    Article  CAS  Google Scholar 

  126. Liu S, Wang Y, Ming X, Xu Z, Liu Y, Gao C. High-speed blow spinning of neat graphene fibrous materials. Nano Lett. 2021;21:5116.

    Article  CAS  Google Scholar 

  127. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano. 2013;7:5940.

    Article  CAS  Google Scholar 

  128. Li H, Tang Z, Liu Z, Zhi C. Evaluating flexibility and wearability of flexible energy storage devices. Joule. 2019;3:613.

    Article  Google Scholar 

  129. Lee YG, Lee J, An GH. Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Adv Funct Mater. 2021;31:2104256.

    Article  CAS  Google Scholar 

  130. Khudiyev T, Lee JT, Cox JR, Argentieri E, Loke G, Yuan R, Noel GH, Tatara R, Yu Y, Logan F, Joannopoulos J, Shao-Horn Y, Fink Y. 100 m long thermally drawn supercapacitor fibers with applications to 3d printing and textiles. Adv Mater. 2020;32: e2004971.

    Article  Google Scholar 

  131. Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano. 2017;11:2066.

    Article  CAS  Google Scholar 

  132. Wu T, Wu X, Li L, Hao M, Wu G, Zhang T, Chen S. Anisotropic boron-carbon hetero-nanosheets for ultrahigh energy density supercapacitors. Angew Chem Int Ed. 2020;59:23800.

    Article  CAS  Google Scholar 

  133. Wu X, Xu Y, Hu Y, Wu G, Cheng H, Yu Q, Zhang K, Chen W, Chen S. Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat Commun. 2018;9:4573.

    Article  Google Scholar 

  134. Cheng H, Meng J, Wu G, Chen S. Hierarchical micro-mesoporous carbon-framework-based hybrid nanofibres for high-density capacitive energy storage. Angew Chem Int Ed. 2019;58:17465.

    Article  CAS  Google Scholar 

  135. Wu T, Ma Z, He Y, Wu X, Tang B, Yu Z, Wu G, Chen S, Bao N. A Covalent Black Phosphorus/Metal-Organic Framework Hetero-nanostructure for High-Performance Flexible Supercapacitors. Angew Chem Int Ed. 2021;60:10366.

    Article  CAS  Google Scholar 

  136. Wu X, Zhu X, Tao H, Wu G, Xu J, Bao N. Covalently aligned molybdenum disulfide-carbon nanotubes heteroarchitecture for high-performance electrochemical capacitors. Angew Chem Int Ed. 2021;60:21295.

    Article  CAS  Google Scholar 

  137. Bae J, Song MK, Park YJ, Kim JM, Liu M, Wang ZL. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed. 2011;50:1683.

    Article  CAS  Google Scholar 

  138. Sun C, Li X, Cai ZS, Ge FY. Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor. Electrochim Acta. 2019;296:617.

    Article  CAS  Google Scholar 

  139. Li Z, Huang T, Gao W, Xu Z, Chang D, Zhang C, Gao C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano. 2017;11:11056.

    Article  CAS  Google Scholar 

  140. Wu T, Ma Z, He Y, Wu X, Tang B, Yu Z, Wu G, Chen S, Bao N. A covalent black phosphorus/metal–organic framework hetero-nanostructure for high-performance flexible supercapacitors. Angew Chem Int Edit. 2021;60:10366.

    Article  CAS  Google Scholar 

  141. Su B, Li J, Xu H, Xu Z, Meng J, Chen X, Li F. Scientific athletics training: flexible sensors and wearable devices forkineses monitoring applications. Scientia Sinica Informationis. 2022;52:54.

    Article  Google Scholar 

  142. Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv Mater. 2020;32: e1902670.

    Article  Google Scholar 

  143. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118:9233.

    Article  CAS  Google Scholar 

  144. He J, Lu C, Jiang H, Han F, Shi X, Wu J, Wang L, Chen T, Wang J, Zhang Y, Yang H, Zhang G, Sun X, Wang B, Chen P, Wang Y, Xia Y, Peng H. Scalable production of high-performing woven lithium-ion fibre batteries. Nature. 2021;597:57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (No. 51425202, No. 51772150), the Natural Science Foundation of Jiangsu Province (No. BK20211592, No. BK20160093), the Key Research and Development Program of Jiangsu Province (No. BE2016006-1), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningzhong Bao.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, T., Li, Z., Qiu, D. et al. Recent Progress of Graphene Fiber/Fabric Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. Adv. Fiber Mater. 5, 896–927 (2023). https://doi.org/10.1007/s42765-023-00262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00262-y

Keywords

Navigation